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Sylvie Parey on Wednesday will present applications of 
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reanalysis or numerical models



Preprocessing or rough data : how to choose

ROUGH APPROACH ⎯→⎯  no preprocessing :  example :   
non stationary extremes  GEV models :  G(μ(t),σ(t),ξ(t)) 
Problems well known : quality of probability asymptotics :  
Parametric or non parametric; quite small samples for GEV or 
POT. Model choices for parametric, seasonality smoothness 
for non parametric 
PREPROCESSING APPROACH ⎯→⎯ try to let the 
stochastic part of the signal as stationary and simple as 
possible. Basically X t =T t +V t Y t  and T t =m t +S t   and V t =v t s  
Separation (when justified?)  low frequency and seasonality 
REMARK Justification of any treatment of rough data needs  
analysis of stochastic properties 
 



Preprocessing and reduced
stochastic process

Remark: very important statistical pre-processing (non 
parametric techniques as loess, lasso, wavelets) depends on 
properties of Y: for instance of the global level of correlation 
Ex:  control of the global correlation of the process Y 
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 basic for objective smooth parameter tuning (cross validation)
(Thi Tu Hoang thesis Orsay 2010 and forthcoming paper ) 
the same remark for the use of rough data and interpretation 
of statistical results



Main goals for statistical studies of 
temperature

Preprocessing: 
 Non stationarities 1- trends low frequency smoothness : 
mean;variance; extremes 2-seasonalities 3-links seasonalties 
low frequency 
Modelisation, fit, validation Analysis of the stochastic part 
dynamics extremes how are extremes produced 
 
Models of simulations with “right representation of 
extremes : complex events (extremes…) 
 
Comparison between series covariables attribution and 
causality : distressing polemics on climate science : scientific 
part almost always on time series statistical problems ex 
France :sun activity versus temperatures 



Cyclo-stationarity of the reduced process 
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Tests of (cyclo)stationarity  
⎯→⎯ For correlations or functional of correlations ex: mean 

time equilibrium return 
⎯→⎯ for extremes extY of Y: K hypothesis extY is stationary  

GEV( ),, ξσμ   to test against  H alternative ext Y non stationary 
GEV ( ))(),(),( ttt ξσμ  
Let Δ  a distance between the models estimated under H 
and the model estimated under K (for instance: L 2  or 
Kullback distances) 
Tables by bootstrap, power test computed 
General conclusion (Sylvie Parey): for the amount of 
observed data: K cannot be rejected on almost all parts of 
Europe 



Stochastic modelisation : 
results and work program

Temperature reduced process has  complex properties 
 Obviously a continuous time process with continuous trajectories 
Evident biperiodicity day and year, the two periodicities are linked 
What about the memory : there are physical reasons to think that 
continuous time process has Markov property 
What about discrete time observed  subprocesses : markovianity can 
be tested. For instance : at fixed hour every  this properties remains 
 Series of max or min have Markov properties 
One can check what theory predicts mean temperature are not 
Markovian (  for instance the mean memory is about 3 for day scale)  
The continuous process is thus a bicyclic stationary diffusion if the 
first preprocessing has eliminated  low frequency , if not stationary 
is not too far 



Stochastic analysis for extremes :
the continuous time 

Let  X t   be a recurrent diffusion with values in the open interval  (r 1  , r 2  ) 
the endpoints  r1  , r 2    being inaccessible 

dXt b Xt dt a Xt dWt  
 

 where  b  is the drift and  a  is the diffusion coefficient of the diffusion 
process.  W  is a Brownian motion. 
Let  s  be the scale function of the process:  

s(x)
x

e
u

-2 b v

a2 v
dv

du  
 

 



Maximum of a stationary diffusion
Berman result

Let M T  maximum of a stationary ergodic diffusion on 
0,T)  
 Theorem : If there exists two sequences of real 
numbers such that G
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GEV distribution, G(μ,σ,ξ) and G is also the max limit 
of a sequence of independent equidistributed r.v of 
distribution F linked to the diffusion by  
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Basic result

Lemma: Suppose that F is in the extreme domain of attraction
of some GEV distribution G with shape parameterξ <0, let rS
the common upper bound of F and G.  

We have the following behavior of a near the upper bound sr ,

ξ
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July Bordeaux Vertical lines 1% and 99% quantiles r= μ-σ/ξ



Density transition for the diffusion skeleton (DDC 80)

P(x,y)=A(x,y)L(x,y)  with  

A(x,y)= −exp
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Bivariate distribution and transition density

• In the previous formula the behaviour of the density transition, the 
invariant marginal density and so the bivariate distribution can
be obtained as x and y tend to r , only the term in H is important 
and the transition satisfies following formula and allows to study
asymptotic independence ans index of clusterisation (the marginal 
invariant distribution is given by that, well known , of the diffusion 
process) 

p(x,y )≈ (y-x) ξ
1
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Summary of the use of continuous time process

Statistics (blocks and GEV, treshold POT) ⎯→⎯ 0<ξ  
⎯→← boundness ⎯→← for continuous time diffusion 1)marginals 

and transitions have the same shape parameter and 2) 
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    as x tends to r this implies  ⎯→⎯ for the 

discrete observed Markov chain : the tail (asymptotic) of the 
transition and of the marginal are known (i.e the bivariate 
distribution) 
p(x,y)≈(y-x) ξ

1
−  as y and x tend to the boundary r with y>x 

This implies the possibility of a study for asymptotic 
independence index extreme etc 



Second approximation : Euler scheme
• The skeleton even with the  previous approximation is difficult to 

manage in statistics and not usefull for simulation
• First order scheme is a FARCH process: it is a stationary process

geometrically ergodic (need some care) where Δ (here 1) is the 
mesh of observations
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Discrete approximations as misspecifications

FARCH approximated discretization ⇔ misspecification
is cyclo stationary , geometrically ergodic, no density for a(.,j) =0
out of a bounded interval.

Misspecified process : marginals support whole R
The observed distributions are supported by  (r1, r2) 
Exact data ⇔ conditional estimation ⇔ THE OBSERVATIONS ARE
IN THE FINITE SUPPORT (r1, r2) OF a ⇔ Estimation made with all data 

in (r1, r2) ⇔ a(y) = 0 if y∉ (r1, r2) 
Simulation model with Gaussian noise has a weak percentage (<10-3) out of I 

for 50 years ⇔ Probability of large excursion 
Proof: m.l.e for misspecified models 



Quantiles (red vertical lines) for July of Yt and their distributions built from the 
simulations of different models: in black, model with constant a, in green, model with a
= f(t), in blue, model with a(t, Yt-1)



Embedding and seasonalities
The reduced process Y has 0 mean and variance 1; 
nevertheless it remains stochastic periodicity 
Let us look only to the year seasonality. 
The drift b(x) is very close to linearity bx even in the extreme 
part and slowly varying with the season 
The diffusion coefficient a(x) is 0 out of and interval slowly 
varying with the months but it is quite linear between the 
quantiles 2% and 98% and of course taken positive its slope is 
positive in summer, negative in winter and important. The 
slope is weak in spring and autumn 
The shape coefficient has slow variations 
It is not possible to do a complete “deseasonalisation” of a 
periodic dynamic  
To use previous results for stationary process and specifically 
foe extremes, the best is to use an imbedding of the discrete 
time chain of observation in order to use the previous results; 
This is always possible and can have a physical interpretation 
Thus problems of seasonality are difficult to take in account 
for extremes (as well for rough treatment as for 
preprocessing).



Conclusion

Use of extremes is based on probability approximations 
intrinsically difficult 
Time climatic series require high level of care. Stochastic 
analysis after statistical pre processing is an interesting 
framework. Local variance is depends on the state and 
drives the extremes behaviour. The shape of the conditional 
mean is no important. We think that even when a direct 
treatment is done for extremes, it is necessary to study the 
reduced process to « qualify the direct work. »  
Statistical evidence depends on (the amount) data, often for 
extremes behaviour and specifically for that of reduced 
variables it seems depends on” feelings” 
 


