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Application in mind

We are interested in developing a methodology / framework so that:

given data from a network of buoys, satellite measurements or reanalysis output, over a
certain region, to be able to predict the occurrence of certain rare events for some other
area of interest, in order to give warnings about potential catastrophes.
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The approach ...

... taken is to construct optimal alarm systems based on event prediction of level
crossings for random fields. We consider the (potentially catastrophic) spatio-temporal
process of interest as a family of spatial random fields indexed by time
{ξ(s, t), s ∈ R2, t ∈ R}. In addition, we assume there is a multivariate alarm random
field, {η(s, t) = (η1(s, t), . . . , ηk(s, t)), s ∈ R2, t ∈ R}, for some k ∈ N,
which could be ξ and possibly its derivatives with a different time origin.

For simplicity, we also suppose that there are a number of fixed spatial locations from
which the alarm field η can be observed in order to give an alarm at a
number of fixed spatial locations for a catastrophe for the field ξ.
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Alarms and Catastrophes

Suppose that

a catastrophe occurs at time t if ξr(t) = (ξ(s01, t), . . . , ξ(s0r, t)) ∈ C ∈ Rr

an alarm is given at time t if ηm(t) = (η(s11, t), . . . ,η(s1n, t)) ∈ A ∈ Rm.

The context of interest would determine both sets of spatial locations and the choice of
C. The form of C should reflect the occurrence of high levels for the catastrophe ξ at the
locations chosen for ξ.
For example, C could be:

C = {x ∈ Rr : max(x1 − u1, . . . , xr − ur) ≥ 0},

where u1, . . . , ur are (usually high) levels which may vary according to the spatial
location.
The choice of A would reflect information which gives a higher probability of a
catastrophe and should be chosen according to some optimality criteria.
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Optimal Alarm Systems

Problem: is to predict h- time units in advance whether a catastrophe will occur or not.
The probabilities of interest in the optimal alarm setting are:

The alarm size of A is given by α = P (ηm(t) ∈ A) - the proportion of time the alarm
process is in the alarm state.

The catastrophe size of C is given by γ = P (ξr(t) ∈ C) - the proportion of time the
catastrophe process is in the catastrophe state.

The risk of a catastrophe C at lag h for an alarm region A ,

ρh = P (ξr(t+ h) ∈ C At) - the proportion of time the catastrophe process is in the

catastrophe state at lag h after the alarm process has entered the alarm state. A
measure of how correct the alarm is.

The detection probability with warning time h of an alarm A for a catastrophe C,

δh = P (ηm(t) ∈ A Ct+h) - the proportion of time that the start of a catastrophe

had an alarm associated with it exactly h time units earlier. A measure of how many
catastrophes were detected.
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Probabilities of Interest

As in any diagnostic setting is desirable to keep the detection probability close to one,
i.e. that we detect as many catastrophes as possible while we keep the risk probability
as high as possible, i.e. keeping the number of false alarms as low as possible . One
way of doing so is by making the alarm region as large as possible, which obviously
would lead to a larger number of false alarms.

Fixing the size of the alarm region (time the alarm process spends in the alarm state α)
and then choose the best alarm region in the sense of maximising the probability to
detect a catastrophe, is one way of achieving a compromise.

Comment: There are alternative ways of choosing the optimal alarm region but almost all
of them involve the quantities that will be presented later ...

ESF- Cambridge 2010 – p. 6/28



Optimal Alarm Systems, cont.

Lemma: The alarm system with

Ah =







x ∈ Rm :
f0
ηm(t)

(x Ct+h)

fηm(t)(x)
≥ kh







,

where

f0
ηm (· Ct+h) is the Palm density given a catastrophe will commence at time t+ h

fηm(t)(x) is the unconditional multivariate density

kh ≥ 0 are such that P (ηm(t) ∈ Ah) = αh,

is optimal of size αh,

Optimality is in the sense P 0(ηm(t) ∈ Ah C(t+ h)) = supB P 0(ηm(t) ∈ B C(t+ h))

with sup taken over all Borel subsets B ∈ Rm such that P (ηm(t) ∈ B) ≤ αh.
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Palm Distributions

We now turn to the problem of obtaining the densities required to determine the optimal
alarm regions.

We want (ξ,η), C and A be such that points at which these events occur are isolated in
time and that the conditioning events A(t) - the time the process η enters A- and C(t) -
the time the process ξ enters C - have zero probability for a fixed time t.

Hence, the distributions for η and ξ conditionally on A(t) and C(t), will be defined by
means of Palm distributions and under the assumption (η, ξ) is ergodic.

For this, we assume that the fields ξ,η and the sets A and C satisfy about a page and a
half of conditions which can be found in Corollary 11.2.2 and Theorem 11.2.1 of Adler
and Taylor (2007).

These conditions, technical in nature, just make sure that: the fields are smooth enough
for the appropriate point processes to have nice intensities, so points are isolated, and the
boundaries of the alarm and catastrophe are smooth with respect to Lebesgue measures.

These conditions simplify considerably the moment we assume the fields to be Gaussian
and actually translate to conditions on the covariances of the fields and their derivatives!
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Palm Distributions , cont.

To compute the Palm distribution for η given the event C(0) occurs, we define:

NT = #{t ∈ [0, T ] : C(t) occurs} = # of entries into C by ξ through ∂C over [0, T ]

and

NT (Bτ ) = #{t ∈ [0, T ] : C(t) occurs and η(t + ·) ∈ Bτ } =

= # of entries intoC by ξ through ∂C over [0, T ] so that η(t+ ·) ∈ Bτ ,

where Bτ is a finite dimensional set.

Assuming the expectations exist, the conditional f.d.d of η given the event C(0) are
defined as

P
(

(η(τ1), . . . ,η(τn)) ∈ Bτ C(0)
)

=
E [N1(Bτ )]

E[N1]
.
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Palm distributions, cont.

In order to find the expectations in the previous slide, we suppose that the boundary ∂C

can be expressed in terms of a real valued function M satisfying

x ∈ ∂C ⇐⇒ M(x) = 0

x ∈ C ⇐⇒ M(x) > 0,

and M(x) < 0 otherwise, with x ∈ Rr . It can be assumed that M(x) is
continuously differentiable w.r. to all components of x, at least near the boundary ∂C

and except possibly for a set of ((r− 1)-dim) Lebesgue measure zero on ∂C, (due to ∂C

being smooth a.e.).
This would be true, for instance, if C is the region similar to that given by

C = {x ∈ Rr : max(x1 − u1, . . . , xr − ur) ≥ 0}.
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Palm Distributions, (cont.)

For the restriction of the process on the boundary, Mt = M(ξ(t)), which is also
stationary and ergodic, by an appropriate choice of M(·), Mt are such that the one and
a half-page conditions of Theorem 11.2.1 of Adler and Taylor (2007) are satisfied for
{(Mt,Ṁt,η(t)), t ∈ R}. These restrictions are not onerous and, for Gaussian
processes, are satisfied by the earlier conditions and appropriate conditions on their
covariance functions (such as (11.2.5) on p. 268 of Adler and Taylor(2007)).

Hence, the entries into C through ∂C by ξ(t) can be expressed by means of
zero-upcrossings by Mt.

Thus, the event that ξ(·) enters C at time t is given by

C(t) = {Mt = 0,Ṁt > 0}.

This is a quite neat construction since by reducing a one variable restriction for a
multivariate process to a one variable restriction for a univariate process, allows use of
the Rice formula.
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Rice formula

Theorem: The mean number of entries into C from Cc across the boundary ∂C per time
unit is given by:

γξ = E(N1) = fM0
(0)E

[

(Ṁ0)
+ M0 = 0

]

=

∫ ∞

z=0
zfM0,Ṁ0

(0, z)dz

=

∫

x∈∂C

q(x)fξ(0)(x)ds(x)

where

q(x) = |Ṁ(x)|−1E
[

[(Ṁ0)
+ ξ(0) = x

]

= E
[

(νx · ξ̇(0))+ ξ(0) = x

]

and ds(x) is the surface element on ∂C.
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Back to the Palm distr.

Theorem: Under the above assumptions on (ξ,η), C and M, it follows that, with
probability one,

lim
T→∞

NT (Bτ )

NT

=
E [N1(Bτ )]

E[N1]

=
fM0

(0)E
[

I{η(0 + ·) ∈ Bτ }(Ṁ0)+ M0 = 0
]

fM0
(0)E

(

(Ṁ0)+ M0 = 0
)

=
1

γξ

∫ ∞

z=0
zP

(

η(0 + ·) ∈ Bτ M0 = 0,Ṁ0 = z
)

fM0,Ṁ0
(0, z)dz

=
1

γξ

∫ ∞

z=0

∫

y∈B

zfM0,Ṁ0,ητ
(0)(0, z,y)dzdy.

where

ητ = (η(τ1), . . . ,η(τn))

and Bτ , (τ1, . . . , τn), B and n are as before.
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Palm Distributions, cont.

The above integrals, involve the joint density of (M0,Ṁ0) and the conditional density of

ητ (0) (M0 = 0,Ṁ0 = z) - which usually do not have simple closed forms - , so f we

rewrite them as surface integrals in terms of the distributions of ξ and its derivative:
Theorem: Under the above assumptions on (ξ,η) and C, and assuming Bτ is open,
then

E [N1(Bτ )]

E[N1]
=

1

γξ

∫

x∈∂C

∫

z∈Rr

(

νx · ξ̇(0)
)+

×

P
(

η(0) ∈ Bτ ξ(0) = x, ξ̇(0) = z
)

f
ξ(0),ξ̇(0)(x, z)dzds(x),

=
1

γξ

∫

x∈∂C

∫

z∈Rr

∫

y∈B

(νx · z)+ f
ξ(0),ξ̇(0),η

τ
(0)(x, z,y)dydzds(x),

where ds(x) is the surface element on ∂C.
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Optimal alarm systems, revisited

Theorem: The alarm region given by

Ah =

{

y ∈ Rm :

∫

x∈∂C

∫

z∈Rr

(νx · z)+ f
ξr(h),ξ̇r(h) ηm(0)

(x, z y)dzds(x) ≥ kh

}

,

is optimal of size αh, where ξ̇r denotes the derivative of ξr with respect to t, νx is the
unit vector normal to the surface ∂C at the point x in the direction of entry into C and the
nonnegative constants kh are such that P (ηm(t) ∈ Ah) = αh.

The integral with respect to x should really be written as a sum of integrals over those
regions for which ∂C is smooth. The areas where M(·) is not differentiable are of
Lesbegue measure less than r − 1 and hence of no concern.
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Optimal alarm systems - special case

This region Ah is difficult to interpret in the general case, so let assume that C takes the
form given by

C = {x ∈ Rr : max(x1 − u1, . . . , xr − ur) ≥ 0}.

Thus,

∂C = {x ∈ Rr;max
i

xi = ui} = ∪r
i=1∂Ci

where ∂Ci = {x ∈ Rn;xi = ui, xj ≤ ui, j 6= i} for i = 1, 2, . . . , r.

Then the integral with respect to x can be written as a sum of integrals over the ∂Ci’s.
As well, the unit vector normal to ∂Ci at x in the direction of entry into C is then simply
the ith unit vector νx = δi = (0, . . . , 1, . . . , 0) for all x ∈ ∂Ci; that is, a zero vector with
a one in the ith position. Hence...
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Optimal alarm systems, cont.

Corollary The optimal alarm region of size αh is given by

Ah =

{

y :
r

∑

i=1

∫

x∈∂Ci

∫

{z∈Rr :zi>0}
zifξr(h),ξ̇r(h)|ηm(0)(x, z|y)dzdx

i ≥ kh

}

=







y :
r

∑

i=1





∏

j 6=i

∫ uj

−∞





[

σ̇(h)Ψ

(

µ̇i(x
i
u,y; h)

σ̇(h)

)]

fξr(h)|ηm(0)(x
i
u|y)dx

i ≥ kh







,

where xi
u = (x1 . . . , xi−1, ui, xi+1 . . . xr), dxi = dx1 . . . dxi−1dxi+1 . . . dxr ,

µ̇i(x
i
u,y; h) = µ

ξ̇i(h)|ξr(h),ηm(0)(x
i
u,y; h) and σ̇2

i (h) = σ
ξ̇i(h)|ξr(h),ηm(0)(h)

are the conditional mean and variance respectively of ξ̇i(h) given ξr(h) = xi
u and

ηm(0) = y,
∫∞
0 xfX (x)dx = σΨ(µ/σ) for X ∼ N(µ, σ2) so Ψ(z) = φ(z) + xΦ(z) with

φ(z) and Φ(z) the standard normal probability density function and distribution function
respectively, and the nonnegative constants kh are such that P (ηm(t) ∈ Ah) = αh.
The conditional mean and variance can be obtained using multi-variate normal theory.
The integrals in are non-trivial to evaluate and so this is done numerically.
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Examples

We consider as alarm and catastrophe process a centered Gaussian with covariance
function

r(x, y, t) = λ0 exp

(

−
1

2λ0
(x, y, t)Λ(x, y, t)′

)

,

with

Λ =









0.7 0 −0.09

0 0.2 0.04

−0.09 0.04 0.2









λ0 = 1.
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Examples, Cont.
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Top: Plot of the optimal alarm region for different values of h with alarm size
α ∈ [0.1, 0.2]. Middle: Covariance function between ξ(p, t+ h), η(s, t) for p = (0, 0) and
s = (1, 2). Bottom: Covariance function between ξ̇(p, t+ h), η(s, t) for p = (0, 0) and

s = (1, 2).
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Examples, Cont.

Top: Simulation of process η(s, t) for s = (1, 2). The red line indicates the corresponding
optimal alarm region of size α =. Bottom: Simulation of the process ξ(p, t+ h) for

p = (0, 0) and t = 0.5h. The black line indicates the catastrophe region. We have used
u = 2.
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Examples, Cont.
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Examples, Cont.
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Alarm sizes and risk probabilities for the values of h where a catastrophe occurs exactly
h time after an alarm was given.
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Preliminaries for Slepian models

As we have seen the distributions for η and ξ conditionally on A(t) and C(t), were
defined by means of Palm distributions and under the assumption (η, ξ) is ergodic. The
conditional distributions thereby obtained can be interpreted as the distributions:

for η around points in time at which the catastrophe process ξr enters the set C

for ξ around points in time at which the alarm process ηm enters the set A.
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Slepian Models

We can obtain the multivariate version of the long-run Rayleigh distribution of the
derivative of the field at an upcrossing. Assuming (ξ,η) are jointly Gaussian and satisfy
the conditions we mentioned, we obtain the Slepian model for η|C(0).
Let κ(t) denote a non-stationary m-dimensional normal process with mean zero and the
covariance matrix

rη(t1, t2) = rη(t1 − t2)−
[

rξ,η(t1)
T − ṙξ,η(t1)

T
]

r
ξ,ξ̇

(0)−1





rξ,η(t2)

−ṙξ,η(t2)



 .

Also (χ, ζ) is a 2r-dim r.v. independent of κ, taking values on

{(x, z) ∈ ∂C− ×Rr : νx · z > 0 for each x ∈ ∂C−}

and with distribution given by

fχ,ζ(x, dz)ds(x) =
νx · z

γξ
f
ξ̇(0)|ξ(0)(z|x)fξ(0)(x)dzds(x),

where ∂C− = {x ∈ ∂C with first order der.}
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Slepian Models

The Slepian model is given by:

η∂C(t) = m
η
χ,ζ

(t) + κ(t)

where

m
η
χ,ζ

(t) =
[

rξ,η(t)
T − ṙξ,η(t)

T
]

r
ξ,ξ̇

(0)−1





χ

ζ



 .

Using the characteristic functions for the finite dimensional distributions we can show:

Theorem: Under the conditions on (ξ,η) and C and ∂C , the finite dimensional
distributions for the conditional process η|C(0) are the same as those for the process
η∂C .
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Future Work

This is work on progress. So there are a lot of things to be done! Still, we are currently
working on

special cases of covariance functions and for different numbers of alarm and
catastrophe locations

on developing the theory for the case of catastrophe occurring at random locations
and along a curve,

and we intend to

test the theory using satellite and buoy data of significant wave height in order to
predict floods and other related extreme events.

ESF- Cambridge 2010 – p. 26/28



References

Adler, Robert J. and Taylor, Jonathan E. (2007) Random fields and geometry.
Springer Monographs in Mathematics Springer, New York.

Baxevani, A., Wilson, R., Scotto, M., (2010). Designing Optimal Alarms in Space
and Time under preparation.

Baxevani, A., Wilson, R., (2010). Catastrophe Predictions for Spatial Regions under
preparation.

Lindgren, G., (1985). Optimal Prediction of Level Crossings in Gaussian Processes
and Sequences in Ann. Probab. Volume 13, Number 3, 804-824.

ESF- Cambridge 2010 – p. 27/28


	small Application in mind
	small The approach ... 
	small Alarms and Catastrophes
	small Optimal Alarm Systems
	small Probabilities of Interest
	small Optimal Alarm Systems, cont.
	small Palm Distributions 
	small Palm Distributions , cont.
	small Palm distributions, cont. 
	small Palm Distributions, (cont.)

	small Rice formula 
	small Back to the Palm distr. 
	small Palm Distributions, cont. 
	small Optimal alarm systems, revisited
	small Optimal alarm systems - special case
	small Optimal alarm systems, cont.
	small Examples 
	small Examples, Cont. 
	small Examples, Cont. 
	small Examples, Cont. 
	small Examples, Cont. 
	small Preliminaries for Slepian models 
	small Slepian Models
	small Slepian Models
	small Future Work
	small References

