Methodologies for the spatial and temporal analysis of European droughts

Geraldine Wong and Lena M. Tallaksen Department of Geosciences, University of Oslo

EU-WATCH background

EU-WATCH background

NAME	Energy Balance	Evapo- transpiration	Runoff-scheme	Snow scheme
H08	YES	Bulk formula	Saturation excess/Beta function	Energy balance
HTESSEL	YES	Penman- Montieth	Variable infiltration capacity/Darcy	Energy balance
JULES	YES	Penman- Montieth	Infiltration excess/Darcy	Energy balance
LPJ	NO	Priestley-Tailor	Saturation excess	Degree day
MPI-HM	NO	Thornwaite	Saturation excess	Degree day
WaterGAP	NO	Priestley-Tailor	Beta function	Degree day
GWAVA	NO	Penman- Montieth	Saturation excess/Beta function	Degree day

ENSEMBLE

Mean of all models

Aim

To explore to what extent large-scale models (GHM and LSHMs) capture characteristics of historic drought (e.g. frequency, duration, scale, severity)

•

- To examine and analyse the spatial distribution of European drought over time using different clustering algorithms
- To provide an insight into return periods of extreme events using severity-areafrequency (SAF) curves

WB4: Hydrological Extremes – DROUGHT

Task 4.1.2 Spatial and temporal scales and severity of droughts

WATCH Multi-Model evaluation of Extremes

- Grid cells with observations: 263
- Grid cell ~ 2 500 km²
- Catchment ~ 306 km²
- Monthly sum of subsurface (Qsb) and surface (Qs) flow covering the period 1958-2001
- Models used: GWAVA and Htessel
- Droughts defined by 20th quantile, for each pixel with respect to their month

Spatial analysis

Latitude

Longitude

Htessel May 1990

1976 drought

GWAVA Jul 1976

Longitude

Htessel Jul 1976

Drought severity

Htessel

GWAVA

Corresponding drought figures

GWAVA

Longitude

Htessel Nov 1981

Longitude

SAF curves – Method 1

- Does not take into account any spatial relationships
- Number of pixels (n) associated with each percentage of land area (p) affected by drought is calculated
- For month *t*, severity of all drought land pixels are sorted in descending manner and most severe pixels associated with *n* are chosen
- Mean severity of these pixels are calculated
- For month *t*, if no. of drought affected pixels < *n*, then NA is recorded

Producing SAF curves

- Suitable distributions are fitted to mean severities associated to each p%
- ARI are calculated for return periods of 10,30, 50 and 100 years

Results – Method 1

- Spatially smoothing of monthly Qs+Qsb for n by n pixels
- Quantiles for each pixel are now calculated relative to the spatially averaged pixels
- Continue as Method 1

Results – Method 2 (2 by 2)

Results – Method 2 (3 by 3)

Method 1

Method 3 – Drought clustering

Results – Method 3

Spatial and temporal independence

- For each land grid cell, randomly select from the collection of months.
- Each grid cell is randomly sampled and are independent.
- Choose most severe n% grid cells and calculate mean severity.
- This is repeated for 100 runs, to produce simulation bounds.

Conclusions

- More severe drought for smaller drought area.
- Higher sensitivity to change in mean drought severity at larger areas for Method 1 and 2 but smaller areas for Method 3 (drought clustering)
- Increased spatial smoothing produces slight increase in severity
- Spatial and temporal dependence is significant.

Ongoing work

- Comparisons across other models
- Modelling spatial-temporal dependence structure as multivariate distribution

