The effect of the exceptionally mild European winter of 2006-2007 on temperature and oxygen profiles in lakes in Switzerland: A foretaste of the future?

J. Rempfer<sup>a,b,1</sup>,David M. Livingstone<sup>a</sup>, Christian Blodau<sup>b,2</sup>, Richard Forsters Rius Niederhauser<sup>a</sup>, and Rolf Kipler<sup>a</sup> rempfer@climate.unibe.ch

> <sup>a</sup>Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water, Dübendorf, Switzerland

> > <sup>b</sup>Limnological Research Station, Department of Hydrology, University of Bayreuth, Bayreuth, Germany <sup>c</sup>Wasserversorgung Zürich (WVZ), Zurich, Switzerland

Ami für Abfall, Wasser, Energie und Luft des Kantons Zürich (AWEL), Zurich, Switzerland Present adresses;

<sup>1</sup> Climate and Environmental Physics, University of Bern, Switzerland and Oeschger Centre for Climate Change Research, University of Bern, Switzerland <sup>2</sup> School of Environmental Sciences, University of Guelph Guelph, Canada

Thanks to; Malaak Kallache

# Mixing regime and heat balance (surface processes) of lakes in this study



Why should we care about lakes in general, and  $\mathsf{O}_2$  in particular - different approaches

- $\bullet\,$  Raw drinking water obtained from lakes (for  ${\approx}1$  Mio people from Lower Lake Zurich)
- O2; important indicator of water quality
- O<sub>2</sub>; most important lake variable aside from water itself (Wetzel 2001)
- Numerical experiments (e.g. Hondzo and Stefan 1993)
- Observations of gradual changes (e.g. Livingstone 2003)
- Effects of extreme events (e.g. Jankowski et al., 2006, Straile et al., 2010)



#### UNIVERSITÄT BERN

ESCHGER CENTRE LIMATE CHANGE RESEARCH

Introduction

### Study lakes



UNIVERSITÄT BERN

#### Data and statistical analysis

- Observations: Approximately monthly time-series of T and O<sub>2</sub>; Lower Lake Zurich (since 1944), Greifensee (since 1956), Upper Lake Zurich and Lake of Walenstadt (1972-2000).
- Standardisation of observations; linear interpolation with depth, cubic spline interpolation in time. Calculated monthly/winter arithmetic mean (e.g. Livingstone 2003, Jankowski et al., 2006).
- Temperature data: Daily minimum and maximum, Zurich meteorological station. Calculated daily (Bilbao et al., 1991) and winter arithmetic mean.
- Fitted general extreme value distribution to each time-series of winter means.
- Performed Kolmogorov-Smirnov goodness-of-fit test.
- Applied boot-strapping technique to ensure "no bias due to interpolation" (Efron 1979).

DESCHGER CENTRE

UNIVERSITĂ

#### Mean winter (DJF) air temperature - Zurich



- Warm winter (December, January, February; DJF)
- Cyclonic storm Kyrill, 17 to 19 January 2007 (Fink et al., 2009)



UNIVERSITÄT BERN

#### Mean temperatures and stability - Lower Lake Zurich





UNIVERSITÄT BERN

#### O<sub>2</sub> concentrations - Lower Lake Zurich



UNIVERSITÄT BERN

#### Profiles of monthly $O_2$ concentrations - Lower Lake Zurich



 $u^{\scriptscriptstyle \flat}$ 

UNIVERSITÄT BERN

#### Profiles of monthly O2 concentrations - Greifensee



 $u^{\scriptscriptstyle b}$ 

UNIVERSITÄT BERN

## Profiles of $O_2$ concentrations in February 2007 - Lake of Walenstadt and Upper Lake Zurich





February Upper Lake Zurich



UNIVERSITÄT BERN

### Summary and Conclusions

- Mean winter air temperature in 2006-2007 exceeded long-term mean.
- Water temperatures, and stability of water column were affected in Upper Lake Zurich and Greifensee.
- Effect on mean winter O<sub>2</sub> was less clear.
- Monthly O<sub>2</sub> profiles partly indicate effect.
- Cyclonic storm in January affected O<sub>2</sub> profiles paticularly in shallow and much less in deep lakes.
- Note: Effect of consecutive mild winters will differ from effect of only one mild winter!
- Increasing winter air temperatures will likely affect mixing in deep but not in shallow lakes even if a severe storm occurs.



UNIVERSITÄT BERN

#### Thank you for your attention!



UNIVERSITÄT BERN

\_

#### Characteristics of the lakes

|                          | LLZ         | GS           | LW           | ULZ         |
|--------------------------|-------------|--------------|--------------|-------------|
| Altitude a.s.l. (m)      | 406         | 435          | 419          | 406         |
| Surface Area (km²)       | 65          | 8            | 24           | 20          |
| Volume (km³)             | 3.3         | .15          | 2.24         | 0.47        |
| Mean depth (m)           | 51          | 18           | 103          | 23          |
| Maximum depth (m)        | 136         | 33           | 145          | 48          |
| z <sub>h</sub> (m)       | 20          | 17           | 20           | 30          |
| Mean retention time (yr) | 1.2         | 1.5          | 1.4          | 1.4         |
| Trophic status (m)       | Mesotrophic | Hypertrophic | Oligotrophic | Mesotrophic |

LLZ: Lower Lake Zurich GS: Greifensee LW: Lake of Walenstadt ULZ: Upper Lake Zurich



UNIVERSITÄT BERN

## Does anthropogenic eutrophication and following oligotrophication effect results from this study?

Rather no:

- Temperature (physical lake variable) is not affected
- Neither is stability of the water column (e.g. via chemical stratification)
- O2 might be, but (in Lake Constance);
  - Phytoplankton growth in winter depends on mixing dynamics (i.e. light)
  - Zooplankton development in winter/spring depends on temperatures (rather than on nutrient availability, refs. in Straile et al., 2010)



UNIVERSITÄT BERN

Stability of the water column (Schmidt 1928, Idso 1973)

$$S = \frac{g}{A_0} \int_0^{z_m} (z_v - z) * (\rho_h - \rho(z)) * A(z) dz$$
 (1)

- g gravitational acceleration
- $A_0$  Lake surface area
- z<sub>m</sub> Maximum depth of lake
- $z_v$  Depth of center of gravity
- $\rho_h$  Hypothetical density following mixing
- $\rho(z)$  Density at depth z
- A(z) Surface area of Isobath at depth z

Density  $\rho(z)$  was derived from temperature and conductivity profiles (Bührer and Ambühl 1975)

 $u^{\scriptscriptstyle b}$ 

UNIVERSITÄT BERN