Role and potential impact of thermophilic microorganisms in temperate terrestrial environments during extreme conditions

Juan M. Gonzalez

Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain

jmgrau@irnase.csic.es

Outline

- Introduction
 - Microorganisms and biogeochemistry
 - Microbial diversity
 - Extremes and extremophiles
 - Thermophiles in temperate environments
- Results & Discussion
 - Thermophiles and their role
 - Extreme temperature conditions
- Conclusions
- Acknowledgements

S and N mineralization

Activity at high temperatures

- Microorganisms play far more important ecological roles than their small size would suggest
- Life in our planet will be impossible without microorganisms
- Microorganisms are intimately involved in biogeochemical processes
- For many elements, microorganisms are the only biological agents capable of carrying out specific transformations

Examples: Methane production

Anaerobic respiration (nitrate, sulfate, carbonate, organic compounds) N₂ fixation, nitrification, denitrification S^o-oxidation, dissimilative sulfate reduction Metal oxidation/reduction Numerous biodegratation pathways

Microbial diversity exceeds expectations

There is a similar number of microbes in 10 g of soil than stars in our galaxy (Curtis & Sloan, 2005; Science 309: 1331)

Microbes (DAPI staining)

- Microorganisms can develop in almost every site on Earth
- A number of microorganisms inhabit extreme environments
 They are named "Extremophiles"

High temperatures (up to 113°C)	Thermophiles
Low temperatures (below 0°C)	Psychrophiles
High pH (above 9)	Alkalophiles
Low pH (below 3)	Acidophiles
High salinity	Halophiles
Elevated pressure	Barophiles

There is life beyond what we can imagine

Thermophiles in temperate environments

Present in soils (Marchant et al., 2002; Environ. Microbiol. 10: 575)

- Current predictions propose an increase of temperature during this century
- More frequent extreme temperature conditions/events are expected
- Questions to approach:
 - Do they carry out ecological roles?
 - Can the necessary conditions for thermophiles occur?

Experiments with natural microbial assemblages

At elevated temperatures S mineralization (sulfate) was higher than at lower temperatures

Sulfate released by thermophiles depends on organic matter

Most 5 in soils (>90%) is in the organic matter fraction

During organic matter consumption <u>ammonium</u> was also released

N mineralization (NH_4^+) at high temperature was similar or higher than at lower temperatures

Can temperature get high enough for thermophiles to grow?

Temperature can reach values adequated for thermophiles

Is *in situ* thermophilic activity significant? Example: Protease activity

In situ degradation of organic compounds increases as temperature increases in soils and sediments

Conclusions

- Thermophiles have a niche of opportunity to develop in temperate systems
- Thermophiles can significantly enhance C, N, and S mineralization in soils and sediments
- In situ organic matter decomposition increases as temperature increases
- Increase of temperature will result in a higher contribution of thermophiles to C, S and N cycling in temperate environments

Acknowledgements

Collaboradors:

M. Carmen Portillo (IRNAS-CSIC and University of Colorado at Boulder)

R. Alloza (Government of Aragon) y E. Arranz (University of Zaragoza)

Funding:

Projects CSD2009-00006 and CGL2009-12328/BOS from the Spanish Ministry of Science and Innovation;

and BIO288 from the Andalusian Regional Government

