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Just to know what we are talking about
Flood Frequency Analysis (FFA) = estimation of upper quantiles of peak 
flows probability distribution, obtained from annual or partial duration series.
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Sometimes the truth depends on the point of view



The true distribution

When we know it…

If we know it…

If we knew it…



„When we know the true distribution”
We can identify the theoretical properties of estimation methods 

But the hypothetical model differs from the true one!

upper part of PDF is outside the scope of actual observation range 
peak flows are error-corrupted data and their quality of information is 
rather low 
no simple statistical model can reproduce the data set in its entire 
range of variability
probability of correct identification of PDF on the basis of short 
hydrological samples is very low

Traditional approach based on the knowledge 
of theoretical distribution is not acceptable



So, „if we know the true distribution”

…and we try to estimate the parameters of the false one

We can investigate the errors, which are due to applied 
estimation method and to the model misspecification 



Probability distributions

Distribution Probability density function (PDF) 

Log-normal 3 (LN3) 
ε = 0: log-normal 2 (LN2)
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m - scale, b > 0 - shape; ε  < x < ?  

Generalized extreme 
values  (GEV) 

ε = 0: log-Gumbel (LG) 
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Estimation methods

Method of (conventional) moments - MOM
Method of linear moments - LMM 
Maximum likelihood method - MLM
Method built on mean deviation - MDM

MDM Location Dispersion Skewness 
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True hypothetical distribution
Two-parameter distributions
T = LN2, H = LN2 and T = LG, H = LG

MC = 20000
( ) ( )ˆ , ˆ 99.099.0 xBxRMSE δδ

Three-parameter distributions
T = LN3, H = LN3 and T = GEV, H = GEV 

log-normal3, GEV
0=μ , 1=σ  

4.0 ,0.2=SC  
100 60, ,20=N  

MC = 20000
( ) ( )ˆ , ˆ 99.099.0 xBxRMSE δδ

log-normal2, log-Gumbel
0>μ  

1.0 0.6, ,2.0=VC  
100 )10( 20=N  

MC = 20,000

MC = 20,000log-normal3, GEV
0=μ , 1=σ  

4.0 ,0.2=SC  
100 )10( 20=N  
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T = LG, H = LG

Accuracy of upper quantile estimates
two-parameter PDFs
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T = GEV, H = GEV

Accuracy of upper quantile estimates
three-parameter PDFs
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False hypothetical distribution but we know the true one

Two-parameter distributions
T = LN2, H = LG and T = LG, H = LN2 

log-normal2, log-Gumbel
0>μ  

1.0 0.6, ,2.0=VC  
100 60, ,20=N  

MC = 20000
( ) ( )ˆ , ˆ 99.099.0 xBxRMSE δδ

Three-parameter distributions
T = LN3, H = GEV and T = GEV, H = LN3 

log-normal3, GEV
0=μ , 1=σ  

4.0 ,0.2=SC  
100 60, ,20=N  

MC = 20000
( ) ( )ˆ , ˆ 99.099.0 xBxRMSE δδ

log-normal2, log-Gumbel
0>μ  

1.0 0.6, ,2.0=VC  
100 )10( 20=N  

MC = 20,000

MC = 20,000log-normal3, GEV
0=μ , 1=σ  

4.0 ,0.2=SC  
100 )10( 20=N  
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Accuracy of upper quantile estimates
two-parameter PDFs
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T = GEV, H = LN3

Accuracy of upper quantile estimates
three-parameter PDFs
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We don’t know the true distribution 
and we want to choose among the 

candidate-distributions

AKAIKE information criterion

The best (true?) model = this one of the lowest AIC value



But… there are some doubts

Differences between AIC values for 
different models are small in context of 
data accuracy

Consequences of the best distribution type 
changes, when the length of observation 
series increases

Number and type of candidate 
distributions



The solution is to use the information 
provided by the cadidate distributions

and aggregate the results obtained from different models

•
•
•



Aggregation of quantiles

Conditional 
probability of  the 
adequacy of i-th 

model

Conditional 
expected 

value



Variance of the aggregated quantile 

Total variance of 
aggregated quantile Variance of quantiles Mean quantiles variance



The results

The results for winter maxima at Tczew on the Vistula river 
(1921-2003)

i Distribution 
type

AIC δi wi x0.99

(m3·s-1)
S(x0.99)
(m3·s-1)

1 P3 1430.205 0 0.299 7800 549.1
2 EV3 1430.535 0.330 0.254 7570 757.4
3 lnN3 1430.507 0.302 0.257 8270 708.6
4 lnP3 1431.113 0.908 0.190 9310 835.0



The weigths versus time (the length of the observation series)

Tczew; winter peak flows Tczew; summer peak flows



The quantiles versus time (the length of the observetion series)



Conclusions                        
Ranking of estimation methods in respect to upper quantile accuracy depends on:
- type of distributions, both real and hypothetical
- number of distribution parameters
- sample size

For two-parameter distributions, in the case of model misspecification, the MLM    
yields the highest bias of quantile estimates, regardless on the sample size, while  
the MOM the smallest one 

Presented analysis can be a source of information about the properties of selected 
distribution and estimation (D/E) procedures

Studies should be extended for other distributions

Aggregation method will be regarded as sharpening operation in fuzzy sets theory 

THANK YOU


