Defining the integers in expansions of the real field

Philipp Hieronymi
McMaster University
Research was funded by Deutscher Akademischer Austauschdienst

Bedlewo, August 10th 2009

Let $\overline{\mathbb{R}}=(\mathbb{R},+, \cdot)$ be the field of real numbers.

Theorem-H.

Let $D \subseteq \mathbb{R}$ be closed and discrete and $f: D^{n} \rightarrow \mathbb{R}$ be such that $f\left(D^{n}\right)$ is somewhere dense. Then $(\overline{\mathbb{R}}, f)$ defines \mathbb{Z}.

This is really about being able to do approximation. Suppose $n=1$ and $f(D)$ is a dense subset $(1,2)$. Consider the following definable set:

$$
\left\{x \in(1,2): \forall a \in D \exists b \in D a<b \wedge f(b)<x<f(b)\left(1+b^{-2}\right)\right\}
$$

Let $\overline{\mathbb{R}}=(\mathbb{R},+, \cdot)$ be the field of real numbers.

Theorem - H.

Let $D \subseteq \mathbb{R}$ be closed and discrete and $f: D^{n} \rightarrow \mathbb{R}$ be such that $f\left(D^{n}\right)$ is somewhere dense. Then $(\overline{\mathbb{R}}, f)$ defines \mathbb{Z}.

This is really about being able to do approximation.
Suppose $n=1$ and $f(D)$ is a dense subset $(1,2)$. Consider the following definable set:

$$
\left\{x \in(1,2): \forall a \in D \exists b \in D a<b \wedge f(b)<x<f(b)\left(1+b^{-2}\right)\right\}
$$

Theorem - Friedman, Miller

Let \mathcal{R} be an o-minimal expansion of $\overline{\mathbb{R}}$ and let $D \subseteq \mathbb{R}$ be such that, for every $m \in \mathbb{N}$ and $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ definable in \mathcal{R}, the image $f\left(D^{n}\right)$ is nowhere dense. Then every subset of \mathbb{R} definable in (\mathcal{R}, D) either has interior or is nowhere dense.

Dichotomy

Let \mathcal{R} be an o-minimal expansion of $\overline{\mathbb{R}}$ and let $D \subseteq \mathbb{R}$ be closed and discrete. Then either

- (\mathcal{R}, D) defines \mathbb{Z} or
- every subset of \mathbb{R} definable in (\mathcal{R}, D) has interior or is nowhere dense.

Theorem - Friedman, Miller

Let \mathcal{R} be an o-minimal expansion of $\overline{\mathbb{R}}$ and let $D \subseteq \mathbb{R}$ be such that, for every $m \in \mathbb{N}$ and $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ definable in \mathcal{R}, the image $f\left(D^{n}\right)$ is nowhere dense. Then every subset of \mathbb{R} definable in (\mathcal{R}, D) either has interior or is nowhere dense.

Dichotomy

Let \mathcal{R} be an o-minimal expansion of $\overline{\mathbb{R}}$ and let $D \subseteq \mathbb{R}$ be closed and discrete. Then either

- (\mathcal{R}, D) defines \mathbb{Z} or
- every subset of \mathbb{R} definable in (\mathcal{R}, D) has interior or is nowhere dense.

Theorem - H.
 Let $\alpha, \beta \in \mathbb{R}_{>0}$ with $\log _{\alpha}(\beta) \notin \mathbb{Q}$. Then $\left(\overline{\mathbb{R}}, \alpha^{\mathbb{Z}}, \beta^{\mathbb{Z}}\right)$ defines \mathbb{Z}.

Proof: The set $\alpha^{\mathbb{N}} \cup \beta^{\mathbb{N}}$ is closed and discrete. Moreover, it is definable in $\left(\overline{\mathbb{R}}, \alpha^{\mathbb{Z}}, \beta^{\mathbb{Z}}\right)$ and its set of quotients is dense in $\mathbb{R}_{>0}$.

Theorem - H.

Let $\alpha, \beta \in \mathbb{R}_{>0}$ with $\log _{\alpha}(\beta) \notin \mathbb{Q}$. Then $\left(\overline{\mathbb{R}}, \alpha^{\mathbb{Z}}, \beta^{\mathbb{Z}}\right)$ defines \mathbb{Z}.
Proof: The set $\alpha^{\mathbb{N}} \cup \beta^{\mathbb{N}}$ is closed and discrete. Moreover, it is definable in ($\overline{\mathbb{R}}, \alpha^{\mathbb{Z}}, \beta^{\mathbb{Z}}$) and its set of quotients is dense in $\mathbb{R}_{>0}$.

Remark

- van den Dries, 85, ($\left.\overline{\mathbb{R}}, \alpha^{\mathbb{Z}}\right)$ does not define \mathbb{Z},
- van den Dries, Günaydın, 06, ($\left.\overline{\mathbb{R}}, \alpha^{\mathbb{Z}} \cdot \beta^{\mathbb{Z}}\right)$ does not define \mathbb{Z},
- Tychonievich, 09, $\left(\overline{\mathbb{R}},\left.\exp \right|_{(0,1)}, \alpha^{\mathbb{Z}} \cdot \beta^{\mathbb{Z}}\right)$ defines \mathbb{Z}.

Theorem - H.

Let $\alpha, \beta \in \mathbb{R}_{>0}$ with $\log _{\alpha}(\beta) \notin \mathbb{Q}$. Then $\left(\overline{\mathbb{R}}, \alpha^{\mathbb{Z}}, \beta^{\mathbb{Z}}\right)$ defines \mathbb{Z}.
Proof: The set $\alpha^{\mathbb{N}} \cup \beta^{\mathbb{N}}$ is closed and discrete. Moreover, it is definable in ($\overline{\mathbb{R}}, \alpha^{\mathbb{Z}}, \beta^{\mathbb{Z}}$) and its set of quotients is dense in $\mathbb{R}_{>0}$.

Remark

- van den Dries, 85, ($\overline{\mathbb{R}}, \alpha^{\mathbb{Z}}$) does not define \mathbb{Z},
- van den Dries, Günaydın, 06, ($\overline{\mathbb{R}}, \alpha^{\mathbb{Z}} \cdot \beta^{\mathbb{Z}}$) does not define \mathbb{Z},
- Tychonievich, 09, $\left(\overline{\mathbb{R}},\left.\exp \right|_{(0,1)}, \alpha^{\mathbb{Z}} \cdot \beta^{\mathbb{Z}}\right)$ defines \mathbb{Z}.

Miller's program

Theorem - H.

Let S be an infinite cyclic subgroup of $\left(\mathbb{C}^{\times}, \cdot\right)$. Then exactly one of the following holds:

- $(\overline{\mathbb{R}}, S)$ defines \mathbb{Z},
- $(\overline{\mathbb{R}}, S)$ is d-minimal,
- every open definable set in $(\overline{\mathbb{R}}, S)$ is semialgebraic.

Proof: Let $S:=\left(a e^{i \varphi}\right)^{\mathbb{Z}} \subseteq \mathbb{R}^{2}$. If $a=1, S$ is a finitely generated subgroup of the unit circle. If $a \neq 1$ and $\varphi \in 2 \pi \mathbb{Q}$, then ($\overline{\mathbb{R}}, S$) and $\left(\overline{\mathbb{R}}, a^{\mathbb{Z}}\right)$ are interdefinable.

Miller's program

Theorem - H.

Let S be an infinite cyclic subgroup of $\left(\mathbb{C}^{\times}, \cdot\right)$. Then exactly one of the following holds:

- $(\overline{\mathbb{R}}, S)$ defines \mathbb{Z},
- $(\overline{\mathbb{R}}, S)$ is d-minimal,
- every open definable set in $(\overline{\mathbb{R}}, S)$ is semialgebraic.

Proof: Let $S:=\left(a e^{i \varphi}\right)^{\mathbb{Z}} \subseteq \mathbb{R}^{2}$. If $a=1, S$ is a finitely generated subgroup of the unit circle. If $a \neq 1$ and $\varphi \in 2 \pi \mathbb{Q}$, then $(\overline{\mathbb{R}}, S)$ and $\left(\overline{\mathbb{R}}, a^{\mathbb{Z}}\right)$ are interdefinable.

Finally let $a \neq 1$ and $\varphi \notin 2 \pi \mathbb{Q}$. Then the function

$$
\left(a_{1}, a_{2}\right) \mapsto \sqrt{a_{1}^{2}+a_{2}^{2}}
$$

is injective on S and maps $\left(a e^{i \varphi}\right)^{n}$ to a^{n} for every $n \in \mathbb{Z}$. Further the function

maps $\left(a e^{i \varphi}\right)^{n}$ to $\sin (n \varphi)$ for every $n \in \mathbb{Z}$.

Finally let $a \neq 1$ and $\varphi \notin 2 \pi \mathbb{Q}$. Then the function

$$
\left(a_{1}, a_{2}\right) \mapsto \sqrt{a_{1}^{2}+a_{2}^{2}}
$$

is injective on S and maps $\left(a e^{i \varphi}\right)^{n}$ to a^{n} for every $n \in \mathbb{Z}$. Further the function

$$
\left(a_{1}, a_{2}\right) \mapsto \frac{a_{2}}{\sqrt{a_{1}^{2}+a_{2}^{2}}}
$$

maps $\left(a e^{i \varphi}\right)^{n}$ to $\sin (n \varphi)$ for every $n \in \mathbb{Z}$. Hence the map
$f: a^{\mathbb{Z}} \rightarrow(0,1)$

$$
a^{n} \mapsto \sin (n \varphi)
$$

is definable in $(\overline{\mathbb{R}}, S)$. Since $\varphi \notin 2 \pi \mathbb{Q}$, the image of f is dense in $(0,1)$. Apply Theorem.

Finally let $a \neq 1$ and $\varphi \notin 2 \pi \mathbb{Q}$. Then the function

$$
\left(a_{1}, a_{2}\right) \mapsto \sqrt{a_{1}^{2}+a_{2}^{2}}
$$

is injective on S and maps $\left(a e^{i \varphi}\right)^{n}$ to a^{n} for every $n \in \mathbb{Z}$. Further the function

$$
\left(a_{1}, a_{2}\right) \mapsto \frac{a_{2}}{\sqrt{a_{1}^{2}+a_{2}^{2}}}
$$

maps $\left(a e^{i \varphi}\right)^{n}$ to $\sin (n \varphi)$ for every $n \in \mathbb{Z}$. Hence the map $f: a^{\mathbb{Z}} \rightarrow(0,1)$

$$
a^{n} \mapsto \sin (n \varphi)
$$

is definable in $(\overline{\mathbb{R}}, S)$. Since $\varphi \notin 2 \pi \mathbb{Q}$, the image of f is dense in $(0,1)$. Apply Theorem.

Miller's Asymptotic Extraction of Groups

An expansion of $\overline{\mathbb{R}}$ defines \mathbb{Z} iff it defines the range of a sequence $\left(a_{k}\right)_{k \in \mathbb{N}}$ of real numbers such that $\lim _{k \rightarrow \infty}\left(a_{k+1}-a_{k}\right) \in \mathbb{R}-\{0\}$.

Theorem - H.

An expansion of $\overline{\mathbb{R}}$ defines \mathbb{Z} iff it defines the range S of an increasing sequence $\left(a_{k}\right)_{k \in \mathbb{N}}$ of positive real numbers such that S is closed and discrete and $\sup _{k}\left(a_{k+1}-a_{k}\right) \in \mathbb{R}_{>0}$.

Miller's Asymptotic Extraction of Groups

An expansion of $\overline{\mathbb{R}}$ defines \mathbb{Z} iff it defines the range of a sequence $\left(a_{k}\right)_{k \in \mathbb{N}}$ of real numbers such that $\lim _{k \rightarrow \infty}\left(a_{k+1}-a_{k}\right) \in \mathbb{R}-\{0\}$.

Theorem - H.

An expansion of $\overline{\mathbb{R}}$ defines \mathbb{Z} iff it defines the range S of an increasing sequence $\left(a_{k}\right)_{k \in \mathbb{N}}$ of positive real numbers such that S is closed and discrete and $\sup _{k}\left(a_{k+1}-a_{k}\right) \in \mathbb{R}_{>0}$.

Let $D \subseteq \mathbb{R}$ be closed and discrete and $f: D^{n} \rightarrow \mathbb{R}$ such that $f\left(D^{n}\right)$ is somewhere dense. We can assume that D is a subset of $\mathbb{R}_{\geq 1}, n$ equals $1, f(D)$ is dense in $(1,2)$.

Idea

Find an $c \in \mathbb{R}$ and a sequence $\left(d_{N}\right)_{N \in \mathbb{N}}$ of elements such that:
(1) $\left\{d_{N}: N \in \mathbb{N}\right\}=\left\{d \in D: f(d)<c<f(d)\left(1+d^{-2}\right)\right\}$,
(2) $f\left(d_{N}\right)\left(1+\frac{d_{N}^{-2}}{N+\frac{1}{N}}\right)<c<f\left(d_{N}\right)\left(1+\frac{d_{N}^{-2}}{N}\right)$.

Proof of the Main Theorem

Let $D \subseteq \mathbb{R}$ be closed and discrete and $f: D^{n} \rightarrow \mathbb{R}$ such that $f\left(D^{n}\right)$ is somewhere dense. We can assume that D is a subset of $\mathbb{R}_{\geq 1}, n$ equals $1, f(D)$ is dense in $(1,2)$.

Idea

Find an $c \in \mathbb{R}$ and a sequence $\left(d_{N}\right)_{N \in \mathbb{N}}$ of elements such that:
(1) $\left\{d_{N}: N \in \mathbb{N}\right\}=\left\{d \in D: f(d)<c<f(d)\left(1+d^{-2}\right)\right\}$,
(2) $f\left(d_{N}\right)\left(1+\frac{d_{N}^{-2}}{N+\frac{1}{N}}\right)<c<f\left(d_{N}\right)\left(1+\frac{d_{N}^{-2}}{N}\right)$.

In order to make the idea work, one has to add the following in (1)

$$
\forall e \in D\left(d^{\frac{1}{7}}<e<d\right) \rightarrow \neg\left(f(e)<c<f(e) \cdot\left(1+e^{-2}\right)\right) .
$$

Let $D \subseteq \mathbb{R}$ be closed and discrete and $f: D^{n} \rightarrow \mathbb{R}$ such that $f\left(D^{n}\right)$ is somewhere dense. We can assume that D is a subset of $\mathbb{R}_{\geq 1}, n$ equals $1, f(D)$ is dense in $(1,2)$.

Idea

Find an $c \in \mathbb{R}$ and a sequence $\left(d_{N}\right)_{N \in \mathbb{N}}$ of elements such that:
(1) $\left\{d_{N}: N \in \mathbb{N}\right\}=\left\{d \in D: f(d)<c<f(d)\left(1+d^{-2}\right)\right\}$,
(2) $f\left(d_{N}\right)\left(1+\frac{d_{N}^{-2}}{N+\frac{1}{N}}\right)<c<f\left(d_{N}\right)\left(1+\frac{d_{N}^{-2}}{N}\right)$.

In order to make the idea work, one has to add the following in (1)

$$
\forall e \in D\left(d^{\frac{1}{7}}<e<d\right) \rightarrow \neg\left(f(e)<c<f(e) \cdot\left(1+e^{-2}\right)\right) .
$$

