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Let R = (R,+, ·) be the field of real numbers.

Theorem - H.

Let D ⊆ R be closed and discrete and f : Dn → R be such that
f (Dn) is somewhere dense. Then (R, f ) defines Z.

This is really about being able to do approximation.
Suppose n = 1 and f (D) is a dense subset (1, 2). Consider the
following definable set:

{x ∈ (1, 2) : ∀a ∈ D∃b ∈ D a < b ∧ f (b) < x < f (b)(1 + b−2)}
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Theorem - Friedman, Miller

Let R be an o-minimal expansion of R and let D ⊆ R be such
that, for every m ∈ N and f : Rm → R definable in R, the image
f (Dn) is nowhere dense. Then every subset of R definable in
(R,D) either has interior or is nowhere dense.

Dichotomy

Let R be an o-minimal expansion of R and let D ⊆ R be closed
and discrete. Then either

(R,D) defines Z or

every subset of R definable in (R,D) has interior or is
nowhere dense.
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Theorem - H.

Let α, β ∈ R>0 with logα(β) /∈ Q. Then (R, αZ, βZ) defines Z.

Proof: The set αN ∪ βN is closed and discrete. Moreover, it is
definable in (R, αZ, βZ) and its set of quotients is dense in R>0.

Remark

van den Dries, 85, (R, αZ) does not define Z,

van den Dries, Günaydın, 06, (R, αZ · βZ) does not define Z,

Tychonievich, 09, (R, exp |(0,1), α
Z · βZ) defines Z.
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Miller’s program

Theorem - H.

Let S be an infinite cyclic subgroup of (C×, ·). Then exactly one
of the following holds:

(R,S) defines Z,

(R,S) is d-minimal,

every open definable set in (R,S) is semialgebraic.

Proof: Let S := (ae iϕ)Z ⊆ R2. If a = 1, S is a finitely generated
subgroup of the unit circle. If a 6= 1 and ϕ ∈ 2πQ, then (R, S) and
(R, aZ) are interdefinable.

Philipp Hieronymi Defining the integers in expansions of the real field



Miller’s program

Theorem - H.

Let S be an infinite cyclic subgroup of (C×, ·). Then exactly one
of the following holds:

(R,S) defines Z,

(R,S) is d-minimal,

every open definable set in (R,S) is semialgebraic.

Proof: Let S := (ae iϕ)Z ⊆ R2. If a = 1, S is a finitely generated
subgroup of the unit circle. If a 6= 1 and ϕ ∈ 2πQ, then (R, S) and
(R, aZ) are interdefinable.

Philipp Hieronymi Defining the integers in expansions of the real field



Finally let a 6= 1 and ϕ /∈ 2πQ. Then the function

(a1, a2) 7→
√

a2
1 + a2

2

is injective on S and maps (ae iϕ)n to an for every n ∈ Z. Further
the function

(a1, a2) 7→ a2√
a2
1 + a2

2

maps (ae iϕ)n to sin(nϕ) for every n ∈ Z.

Hence the map
f : aZ → (0, 1)

an 7→ sin(nϕ)

is definable in (R, S). Since ϕ /∈ 2πQ, the image of f is dense in
(0, 1). Apply Theorem.
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Miller’s Asymptotic Extraction of Groups

An expansion of R defines Z iff it defines the range of a sequence
(ak)k∈N of real numbers such that limk→∞(ak+1 − ak) ∈ R− {0}.

Theorem - H.

An expansion of R defines Z iff it defines the range S of an
increasing sequence (ak)k∈N of positive real numbers such that S
is closed and discrete and supk(ak+1 − ak) ∈ R>0.
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Proof of the Main Theorem

Let D ⊆ R be closed and discrete and f : Dn → R such that
f (Dn) is somewhere dense. We can assume that D is a subset of
R≥1, n equals 1, f (D) is dense in (1, 2).

Idea

Find an c ∈ R and a sequence (dN)N∈N of elements such that:

(1) {dN : N ∈ N} = {d ∈ D : f (d) < c < f (d)(1 + d−2)},

(2) f (dN)(1 +
d−2

N

N+ 1
N

) < c < f (dN)(1 +
d−2

N
N ).

In order to make the idea work, one has to add the following in (1)

∀e ∈ D(d
1
7 < e < d)→ ¬(f (e) < c < f (e) · (1 + e−2)).
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