Defining the integers in expansions of the real field

Philipp Hieronymi

McMaster University Research was funded by Deutscher Akademischer Austauschdienst

Bedlewo, August 10th 2009

Let $\overline{\mathbb{R}} = (\mathbb{R}, +, \cdot)$ be the field of real numbers.

Theorem - H.

Let $D \subseteq \mathbb{R}$ be closed and discrete and $f : D^n \to \mathbb{R}$ be such that $f(D^n)$ is somewhere dense. Then $(\overline{\mathbb{R}}, f)$ defines \mathbb{Z} .

This is really about being able to do approximation. Suppose n = 1 and f(D) is a dense subset (1, 2). Consider the following definable set:

 $\{x \in (1,2) : \forall a \in D \exists b \in D \ a < b \land f(b) < x < f(b)(1+b^{-2})\}$

(4月) イヨト イヨト

Let $\overline{\mathbb{R}} = (\mathbb{R}, +, \cdot)$ be the field of real numbers.

Theorem - H.

Let $D \subseteq \mathbb{R}$ be closed and discrete and $f : D^n \to \mathbb{R}$ be such that $f(D^n)$ is somewhere dense. Then $(\overline{\mathbb{R}}, f)$ defines \mathbb{Z} .

This is really about being able to do approximation. Suppose n = 1 and f(D) is a dense subset (1, 2). Consider the following definable set:

$$\{x \in (1,2) : \forall a \in D \exists b \in D \ a < b \land f(b) < x < f(b)(1+b^{-2})\}$$

Theorem - Friedman, Miller

Let \mathcal{R} be an o-minimal expansion of \mathbb{R} and let $D \subseteq \mathbb{R}$ be such that, for every $m \in \mathbb{N}$ and $f : \mathbb{R}^m \to \mathbb{R}$ definable in \mathcal{R} , the image $f(D^n)$ is nowhere dense. Then every subset of \mathbb{R} definable in (\mathcal{R}, D) either has interior or is nowhere dense.

Dichotomy

Let \mathcal{R} be an o-minimal expansion of \mathbb{R} and let $D \subseteq \mathbb{R}$ be closed and discrete. Then either

- (\mathcal{R}, D) defines \mathbb{Z} or
- every subset of \mathbb{R} definable in (\mathcal{R}, D) has interior or is nowhere dense.

イロト イヨト イヨト イヨト

Theorem - Friedman, Miller

Let \mathcal{R} be an o-minimal expansion of $\overline{\mathbb{R}}$ and let $D \subseteq \mathbb{R}$ be such that, for every $m \in \mathbb{N}$ and $f : \mathbb{R}^m \to \mathbb{R}$ definable in \mathcal{R} , the image $f(D^n)$ is nowhere dense. Then every subset of \mathbb{R} definable in (\mathcal{R}, D) either has interior or is nowhere dense.

Dichotomy

Let \mathcal{R} be an o-minimal expansion of $\overline{\mathbb{R}}$ and let $D \subseteq \mathbb{R}$ be closed and discrete. Then either

- (\mathcal{R}, D) defines \mathbb{Z} or
- every subset of ℝ definable in (𝔅, 𝔅) has interior or is nowhere dense.

Let $\alpha, \beta \in \mathbb{R}_{>0}$ with $\log_{\alpha}(\beta) \notin \mathbb{Q}$. Then $(\overline{\mathbb{R}}, \alpha^{\mathbb{Z}}, \beta^{\mathbb{Z}})$ defines \mathbb{Z} .

<u>Proof:</u> The set $\alpha^{\mathbb{N}} \cup \beta^{\mathbb{N}}$ is closed and discrete. Moreover, it is definable in $(\overline{\mathbb{R}}, \alpha^{\mathbb{Z}}, \beta^{\mathbb{Z}})$ and its set of quotients is dense in $\mathbb{R}_{>0}$.

Let $\alpha, \beta \in \mathbb{R}_{>0}$ with $\log_{\alpha}(\beta) \notin \mathbb{Q}$. Then $(\overline{\mathbb{R}}, \alpha^{\mathbb{Z}}, \beta^{\mathbb{Z}})$ defines \mathbb{Z} .

<u>Proof:</u> The set $\alpha^{\mathbb{N}} \cup \beta^{\mathbb{N}}$ is closed and discrete. Moreover, it is definable in $(\overline{\mathbb{R}}, \alpha^{\mathbb{Z}}, \beta^{\mathbb{Z}})$ and its set of quotients is dense in $\mathbb{R}_{>0}$.

Remark

- van den Dries, 85, $(\overline{\mathbb{R}}, \alpha^{\mathbb{Z}})$ does not define \mathbb{Z} ,
- van den Dries, Günaydın, 06, $(\overline{\mathbb{R}}, \alpha^{\mathbb{Z}} \cdot \beta^{\mathbb{Z}})$ does not define \mathbb{Z} ,
- Tychonievich, 09, $(\overline{\mathbb{R}}, exp \mid_{(0,1)}, \alpha^{\mathbb{Z}} \cdot \beta^{\mathbb{Z}})$ defines \mathbb{Z} .

(人間) (人) (人) (人)

Let $\alpha, \beta \in \mathbb{R}_{>0}$ with $\log_{\alpha}(\beta) \notin \mathbb{Q}$. Then $(\overline{\mathbb{R}}, \alpha^{\mathbb{Z}}, \beta^{\mathbb{Z}})$ defines \mathbb{Z} .

<u>Proof:</u> The set $\alpha^{\mathbb{N}} \cup \beta^{\mathbb{N}}$ is closed and discrete. Moreover, it is definable in $(\overline{\mathbb{R}}, \alpha^{\mathbb{Z}}, \beta^{\mathbb{Z}})$ and its set of quotients is dense in $\mathbb{R}_{>0}$.

Remark

- van den Dries, 85, $(\overline{\mathbb{R}}, \alpha^{\mathbb{Z}})$ does not define \mathbb{Z} ,
- van den Dries, Günaydın, 06, $(\overline{\mathbb{R}}, \alpha^{\mathbb{Z}} \cdot \beta^{\mathbb{Z}})$ does not define \mathbb{Z} ,
- Tychonievich, 09, $(\overline{\mathbb{R}}, exp \mid_{(0,1)}, \alpha^{\mathbb{Z}} \cdot \beta^{\mathbb{Z}})$ defines \mathbb{Z} .

(日本) (日本) (日本)

Let S be an infinite cyclic subgroup of $(\mathbb{C}^{\times}, \cdot)$. Then exactly one of the following holds:

- $(\overline{\mathbb{R}}, S)$ defines \mathbb{Z} ,
- $(\overline{\mathbb{R}}, S)$ is *d*-minimal,
- every open definable set in $(\overline{\mathbb{R}}, S)$ is semialgebraic.

<u>Proof:</u> Let $S := (ae^{i\varphi})^{\mathbb{Z}} \subseteq \mathbb{R}^2$. If a = 1, S is a finitely generated subgroup of the unit circle. If $a \neq 1$ and $\varphi \in 2\pi\mathbb{Q}$, then $(\overline{\mathbb{R}}, S)$ and $(\overline{\mathbb{R}}, a^{\mathbb{Z}})$ are interdefinable.

- 4 同 6 4 日 6 4 日 6

Let S be an infinite cyclic subgroup of $(\mathbb{C}^{\times}, \cdot)$. Then exactly one of the following holds:

- $(\overline{\mathbb{R}}, S)$ defines \mathbb{Z} ,
- $(\overline{\mathbb{R}}, S)$ is *d*-minimal,
- every open definable set in $(\overline{\mathbb{R}}, S)$ is semialgebraic.

<u>Proof:</u> Let $S := (ae^{i\varphi})^{\mathbb{Z}} \subseteq \mathbb{R}^2$. If a = 1, S is a finitely generated subgroup of the unit circle. If $a \neq 1$ and $\varphi \in 2\pi\mathbb{Q}$, then $(\overline{\mathbb{R}}, S)$ and $(\overline{\mathbb{R}}, a^{\mathbb{Z}})$ are interdefinable.

(4月) (4日) (4日)

Finally let $a \neq 1$ and $\varphi \notin 2\pi \mathbb{Q}$. Then the function

$$(a_1,a_2)\mapsto \sqrt{a_1^2+a_2^2}$$

is injective on S and maps $(ae^{i\varphi})^n$ to a^n for every $n \in \mathbb{Z}$. Further the function

$$(a_1, a_2) \mapsto rac{a_2}{\sqrt{a_1^2 + a_2^2}}$$

maps $(ae^{i\varphi})^n$ to $\sin(n\varphi)$ for every $n \in \mathbb{Z}$.

伺い イヨト イヨト

Finally let $a \neq 1$ and $\varphi \notin 2\pi \mathbb{Q}$. Then the function

$$(a_1,a_2)\mapsto \sqrt{a_1^2+a_2^2}$$

is injective on S and maps $(ae^{i\varphi})^n$ to a^n for every $n \in \mathbb{Z}$. Further the function

$$(a_1,a_2)\mapsto rac{a_2}{\sqrt{a_1^2+a_2^2}}$$

maps $(ae^{i\varphi})^n$ to $sin(n\varphi)$ for every $n \in \mathbb{Z}$. Hence the map $f : a^{\mathbb{Z}} \to (0, 1)$ $a^n \mapsto sin(n\varphi)$

is definable in (\mathbb{R}, S) . Since $\varphi \notin 2\pi \mathbb{Q}$, the image of f is dense in (0, 1). Apply Theorem.

(日本) (日本) (日本)

Finally let $a \neq 1$ and $\varphi \notin 2\pi \mathbb{Q}$. Then the function

$$(a_1,a_2)\mapsto \sqrt{a_1^2+a_2^2}$$

is injective on S and maps $(ae^{i\varphi})^n$ to a^n for every $n \in \mathbb{Z}$. Further the function

$$(a_1,a_2)\mapsto rac{a_2}{\sqrt{a_1^2+a_2^2}}$$

maps $(ae^{i\varphi})^n$ to $\sin(n\varphi)$ for every $n \in \mathbb{Z}$. Hence the map $f: a^{\mathbb{Z}} \to (0, 1)$ $a^n \mapsto \sin(n\varphi)$

is definable in $(\overline{\mathbb{R}}, S)$. Since $\varphi \notin 2\pi \mathbb{Q}$, the image of f is dense in (0, 1). Apply Theorem.

Miller's Asymptotic Extraction of Groups

An expansion of \mathbb{R} defines \mathbb{Z} iff it defines the range of a sequence $(a_k)_{k\in\mathbb{N}}$ of real numbers such that $\lim_{k\to\infty}(a_{k+1}-a_k)\in\mathbb{R}-\{0\}$.

Theorem - H.

An expansion of \mathbb{R} defines \mathbb{Z} iff it defines the range S of an increasing sequence $(a_k)_{k\in\mathbb{N}}$ of positive real numbers such that S is closed and discrete and $\sup_k(a_{k+1} - a_k) \in \mathbb{R}_{>0}$.

(日本) (日本) (日本)

Miller's Asymptotic Extraction of Groups

An expansion of \mathbb{R} defines \mathbb{Z} iff it defines the range of a sequence $(a_k)_{k\in\mathbb{N}}$ of real numbers such that $\lim_{k\to\infty}(a_{k+1}-a_k)\in\mathbb{R}-\{0\}$.

Theorem - H.

An expansion of $\overline{\mathbb{R}}$ defines \mathbb{Z} iff it defines the range S of an increasing sequence $(a_k)_{k\in\mathbb{N}}$ of positive real numbers such that S is closed and discrete and $\sup_k(a_{k+1} - a_k) \in \mathbb{R}_{>0}$.

Let $D \subseteq \mathbb{R}$ be closed and discrete and $f : D^n \to \mathbb{R}$ such that $f(D^n)$ is somewhere dense. We can assume that D is a subset of $\mathbb{R}_{\geq 1}$, n equals 1, f(D) is dense in (1, 2).

Idea

Find an $c \in \mathbb{R}$ and a sequence $(d_N)_{N \in \mathbb{N}}$ of elements such that: (1) $\{d_N : N \in \mathbb{N}\} = \{d \in D : f(d) < c < f(d)(1 + d^{-2})\},$ (2) $f(d_N)(1 + \frac{d_N^{-2}}{N + \frac{1}{N}}) < c < f(d_N)(1 + \frac{d_N^{-2}}{N}).$

・ 回 と ・ ヨ と ・ モ と

Let $D \subseteq \mathbb{R}$ be closed and discrete and $f : D^n \to \mathbb{R}$ such that $f(D^n)$ is somewhere dense. We can assume that D is a subset of $\mathbb{R}_{\geq 1}$, n equals 1, f(D) is dense in (1, 2).

Idea

Find an $c \in \mathbb{R}$ and a sequence $(d_N)_{N \in \mathbb{N}}$ of elements such that: (1) $\{d_N : N \in \mathbb{N}\} = \{d \in D : f(d) < c < f(d)(1 + d^{-2})\},$ (2) $f(d_N)(1 + \frac{d_N^{-2}}{N + \frac{1}{N}}) < c < f(d_N)(1 + \frac{d_N^{-2}}{N}).$

In order to make the idea work, one has to add the following in (1)

$$orall e \in D(d^{rac{1}{7}} < e < d)
ightarrow
egl(f(e) < c < f(e) \cdot (1 + e^{-2})).$$

Let $D \subseteq \mathbb{R}$ be closed and discrete and $f : D^n \to \mathbb{R}$ such that $f(D^n)$ is somewhere dense. We can assume that D is a subset of $\mathbb{R}_{\geq 1}$, n equals 1, f(D) is dense in (1, 2).

Idea

Find an $c \in \mathbb{R}$ and a sequence $(d_N)_{N \in \mathbb{N}}$ of elements such that: (1) $\{d_N : N \in \mathbb{N}\} = \{d \in D : f(d) < c < f(d)(1 + d^{-2})\},$ (2) $f(d_N)(1 + \frac{d_N^{-2}}{N + \frac{1}{N}}) < c < f(d_N)(1 + \frac{d_N^{-2}}{N}).$

In order to make the idea work, one has to add the following in (1)

$$orall e \in D(d^{rac{1}{7}} < e < d)
ightarrow
eg (f(e) < c < f(e) \cdot (1+e^{-2})).$$