

Topology of definable groups

Margarita Otero Universidad Autónoma de Madrid

ESF Mathematics Conference: Model Theory Będlewo, August 2009

- *M*: an o-minimal expansion of a real closed field.
- Definable means definable in \mathcal{M} .
- Let $X \subset M^n$ be a definable set. Let

$$X = \bigcup_{C \in \mathcal{D}_X} C$$

(cell decomposition of X). The o-minimal Euler Characteristic of X is

$$E(X) := \sum_{C \in \mathcal{D}_X} (-1)^{\dim(C)}$$

• If X = |K|(M), with K a closed simplicial complex, then

$$E(X) = \chi(K).$$

A definable group is equipped with a definable manifold topology making "." and $-^{-1}$ ' continuous. **Examples.**

- (*M*,+)
- (M^*, \cdot)
- ([0,1)(M), +(mod 1))
- *M*-rational points of an algebraic group
- A compact real Lie group.

G: A definably connected definable group

WLOG. The topology of G is induced by that of the ambient space M^n .

All definable maps are suppose to be continuous.

Definable-tori

A definable-torus (of G) is a definably connected definably compact Abelian group (subgroup of G). It doesn't need to be a direct product of circle groups by Peterzil-Steinhorn'99.

Theorem 1

Let T be a definable-torus of a definably compact G. Then,

- for every definable proper subgroup H of T, E(T/H) = 0;
- T is a maximal definable-torus of G iff $E(G/T) \neq 0$.

Theorem 2

Berarducci'08, Edmundo'05

Berarducci'08, Strzebonski'94

Let G be definably compact. Then,

• for each maximal definable-torus T of G,

$$G = \bigcup_{g \in G} gTg^{-1};$$

• all maximal definable-tori of G are conjugate, hence $Z(G) = \bigcap \{T : T \text{ is a maximal definable-torus of } G \}.$

Corollary 1

If G is definably compact then G/Z(G) is centreless.

Proof. G/Z(G) is a definably compact definably connected group. Let $gZ(G) \neq Z(G)$. Then there is a maximal definable-torus T of G with $g \notin T$.

Since T contains Z(G), T/Z(G) is a definable-torus of G/Z(G)and $gZ(G) \notin T/Z(G)$.

Since

$$E\left(G/Z(G)/T/Z(G)\right)=E(G/T)\neq 0,$$

T/Z(G) is a maximal definable-torus of G/Z(G), so gZ(G) cannot be in the centre of G/Z(G).

Corollary 2

G definably compact. T a maximal definable-torus of G. Then C(T) = T.

Proof. First note that for any $a \in G$, $a \in C(a)^0$. Indeed, let T_1 be any torus of G such that $a \in T_1$. Then, $a \in T_1 \subset C(a)$. Since T_1 is connected $T_1 \subset C(a)^0$. Let $a \in C(T)$ then $T \subset C(a)^0$. $C(a)^0$ is a definably connected definably compact group, hence T is also a maximal definable-torus of $C(a)^0$. Since $a \in C(a)^0$, there is a $g \in C(a)^0$ such that $gag^{-1} \in T$. Therefore, $a \in T$.

Theorem 3

Berarducci-Ot'09

Let T be a definable-torus definably acting on a definable set X. Then $E(X) = E(X^T)$, (X^T) is the fixed point set of the action.

Proof. For every $x \in X$, $E(T/T_x) = E(orb(x))$. Hence, if |orb(x)| > 1 then E(orb(x)) = 0.

Corollary 1

Let G be definably compact. If T is a definable-torus of G then E(N(T)/T) = E(G/T), if T is a maximal definable-torus of G then |N(T)/T| = E(G/T)

Proof. Consider the action of T on the definable set G/T by left multiplication.

Then
$$(G/T)^T = N(T)/T$$
.

If T is moreover maximal then N(T)/T (the Weyl group of G) is finite (Berarducci'08).

Corollary 2

Let T be a definable-torus of a definably compact G. Then, T is a maximal definable-torus of G iff [C(T):T] is finite.

Question

Let T_1 and T_2 be two definable-tori of the same dimension. Are T_1 and T_2 definably homeomorphic?

Theorem 4

Berarducci-Mamino-Ot.'09

Let T_1 and T_2 be two definable-tori of the same dimension. Then, T_1 and T_2 have the same o-minimal homotopy type. That is, there are definable maps $f: T_1 \rightarrow T_2$ and $g: T_2 \rightarrow T_1$ such that gf and fg are definably homotopic to id_{T_1} and id_{T_2} , respectively.

To prove this we need some preliminary results.

o-minimal vs. semialgebraic homotopy

Let X(M) and Y(M) be semialgebraic sets, definably compact and defined w/out parameters.

Theorem 5

Baro-Ot.'09

- For every f: X(M) → Y(M) definable, there is a semialgebraic g: X(M) → Y(M) defined w/out parameters such that f ^{def} g.
- Let f,g: X(M) → Y(M) be semialgebraic (defined w/out parameters). If f ^{def} ⊂ g then there is a semialgebraic homotopy H : f ^{s.a.} g, (resp. with H defined w/out parameters).

In particular, there is a natural bijection:

$$\{f: X(M) \to Y(M) | f \text{ s.a.} \} /_{\stackrel{s.a.}{\sim}} \to \{f: X(M) \to Y(M) | f \text{ def} \} /_{\stackrel{def}{\sim}}$$
$$[f] \longrightarrow [f]$$

Proof of Thm 5

One of the main ingredients of the proof is the following result.

Normal Triangulation TheoremBaro'08Let K be a closed simplicial complex in \mathcal{M} and let X_1, \ldots, X_r be
definable subsets of |K|. Then, there is a subdivision K' of K and
a definable homeomorphism $\phi : |K'| \to |K|$ such that

- (K', ϕ) is a triangulation of |K| partitioning X_1, \ldots, X_r and all $\sigma \in K$, and
- ϕ is definably homotopic to $id_{|K|}$.

o-Minimal homotopy groups

Definition

Let Z be a definable set and $z_0 \in Z$. The o-minimal *n*-th homotopy group is

$$\pi_n(Z, z_0) := \{f \colon (I^n, \partial I^n) \to (Z, z_0) \mid f \text{ definable } \} / \overset{\text{def}}{\sim}$$

for each n > 0, where $I = [0, 1] \subset M$:

Theorem 6

Berarducci-Mamino-Ot.'09

 $\pi_n(G)$ is a finitely generated Abelian group, for all n > 0.

We already knew it for n = 1 and also that $\pi_n(G)$ is an abelian group for all n > 0.

Definition

A (definable) *H*-space is a pointed (resp. definable) space (X, x_0) equipped with a (resp. definable) continuous map $\mu: X \times X \to X$ such that both maps $\mu(-, x_0)$ and $\mu(x_0, -)$ are (resp. definably) homotopic to id_X .

Any definable group is a definable *H*-space. A definable *H*-space defined over \mathbb{R} is indeed an *H*-space.

By taking a definable deformation retract of (a triangulation of) G, we obtain a closed simplicial complex K.

On |K|(M) the multiplication of G has become a definable map

 $m: |K|(M) \times |K|(M) \rightarrow |K|(M)$

which gives to (|K|(M), e) a structure of definable *H*-space. WLOG *e* has rational coordinates.

By Theorem 5 we have

• *m* definably homotopic to some *semialgebraic*

 $\mu:|K|(M)\times|K|(M)\rightarrow|K|(M)$

defined w/out parameters.

 μ(-, e) and μ(e, -) are homotopic to id_X via a semialgebraic homotopy defined w/out parameters.

This gives to (|K|(M), e), a structure of a semialgebraic *H*-space with all maps defined w/out parameters.

Transfer to the reals

Claim

Let $|K|(\mathbb{R})$ be the realization of K in \mathbb{R} . Then $\pi_n(|K|(\mathbb{R}))$ is a fin. gen. abelian group for all n > 0.

Proof of claim. The realization $\mu(\mathbb{R})$ of μ in \mathbb{R} gives to $|\mathcal{K}|(\mathbb{R})$ a structure of *H*-space.

|K|(M) definably connected implies $|K|(\mathbb{R})$ path-connected. In a path-connected *H*-space, the fundamental group acts trivially on all the homotopy groups.

Since K is a finite simplicial complex, the homology groups $H_n(|K|(\mathbb{R}))$, n > 0 are finitely generated, and by a classical result all this implies that also the homotopy groups $\pi_n(|K|(\mathbb{R}))$ are finitely generated.

Preliminary

Transfer back to \mathcal{M}

Once we have $\pi_n(|\mathcal{K}|(\mathbb{R}))$ is a fin. gen. abelian group for all n > 0, we transfer back the results on \mathbb{R} to our o-minimal structure \mathcal{M} .

Corollary to Theorem 5

 $\pi_n(|K|(\mathbb{R})) \cong \pi_n(|K|(M)),$

for each n > 0.

(The r.h.s. is the o-minimal homotopy group and the l.h.s is the topological homotopy group.)

Proof of corollary. By theorem 5 and results of Delfs and Knebusch linking the semialgebraic and the topological setting. \Box Since $\pi_n(G) \cong \pi_n(|K|(M))$, this ends the proof of thm 6 \Box

Corollaries of Thm 6

Corollary 1

If G is Abelian then $\pi_n(G) = 0$, for each n > 1.

Proof. Since $\pi_n(G)$ is a f.g. Abelian group, it suffices to prove that it is divisible for each n > 1. For each k > 0, consider the map

 $p_k: G \ni x \mapsto kx \in G,$

which is a definable covering map and hence the induced maps

$$(p_k)_*: \quad \pi_n(G) \longrightarrow \pi_n(G)$$

 $[\gamma] \rightarrow k[\gamma]$

are isomorphism for each n > 1.

Corollaries of Thm 6

Let $\mathbb{T}^d(M) = [0,1)^d(M)$ with addition modulo 1.

Corollary 2

If G is a definable-torus then G has the same o-minimal homotopy type than $\mathbb{T}^d(M)$, where d is the dimension of G.

Proof. Let $[\gamma_1], \ldots, [\gamma_d]$ freely generate the abelian group $\pi_1(G)$. Then, the map

 $f : \mathbb{T}^d(M) \longrightarrow G : (t_1, \ldots, t_n) \mapsto \gamma_1(t_1) + \ldots + \gamma_n(t_d)$

is a definable homotopy equivalence. Indeed, f induces an isomorphism on the o-minimal fundamental groups and since all the higher o-minimal homotopy groups are trivial f also induces an isomorphism on them.

We apply the o-minimal Whitehead thm (Baro-Ot.'09).

This also ends the proof of thm 4: .

Corollaries of Thm 6

Corollary 3

If G is a definable-torus then $H_n(G) \cong \mathbb{Z}^{\binom{d}{n}}$, for each $0 < n \leq d$, where d is the dimension of G.

Proof. Let n > 0. By Cor 2, the o-minimal homology groups

 $H_n(G) \cong H_n(\mathbb{T}^d(M)).$

By transfer of homology

$$H_n(\mathbb{T}^d(M)) \cong H_n(\mathbb{T}^d(\mathbb{R})),$$

where the r.h.s. is the topological homology group. Finally

$$H_n(\mathbb{T}^d(\mathbb{R}))\cong \mathbb{Z}^{\binom{d}{n}}.$$

Definable fibrations

Definition

Let *E* and *B* be definable sets and $p: E \rightarrow B$ a definable map.

- The map p is a definable fibre bundle with fibre a definable set F if there is a finite open definable covering of
 B = ∪_{i=1}^k U_i and for each i, a definable homeomorphism
 φ_i: U_i × F → p⁻¹(U_i) such that p ∘ φ_i: U_i × F → U_i is the projection onto the first factor.
- The map p is a definable fibration if for every definable set X, for every definable homotopy f : X × I → B and for every definable map g : X → E such that pg = f(-,0) there is a definable homotopy h : X × I → E such that ph = f (h is a lifting of f) and h(-,0) = g(-).

Theorem 7

Berarducci-Ot.-Mamino'09

Every definable fibre bundle is a definable fibration.

Proof. Let $p: E \to B$ a definable fibre bundle. We have to avoid the use of path-spaces and compact-open topology. So instead of a "lifting function for p", we define: for each definable set X and for each definable $f: X \times I \to B$ a lifting function for f (and p) and prove that p is a definable fibration iff for every definable set X and for every definable $f: X \times I \to B$ there is a lifting function for f. \Box

Corollary

If H is a definable subgroup of G then the canonical $p: G \rightarrow G/H$ is a definable fibration.

Proof. p is a definable fibre bundle.

Pillay's conjecture

From now on assume that

- \mathcal{M} is sufficiently saturated.
- G definably compact.

Theorem "Pillay's conjeture" (PC)

- There is a canonical type-definable divisible subgroup G⁰⁰ of G s.th. LG := G/G⁰⁰ with the logic topology is a compact Lie group (Berarducci-Ot.-Peterzil-Pillay'05).
- $\dim G = \dim_{Lie} \mathbb{L}G$ (Hrushovski-Peterzil-Pillay'08).

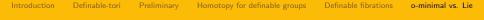
The functor \mathbb{L}

We have a functor

$\mathbb{L}: G \to \mathbb{L}G$

from the *category of definably compact groups* and definable homomorphism to the *category of compact real Lie groups* and continuous homomorphisms.

- \mathbb{L} "preserves" dimension and connectedness (by PC).
- \mathbb{L} is an exact functor (Berarducci'07).
- L "preserves" cohomology: Hⁿ(G) ≅ Hⁿ(LG) (Berarducci'09, Edmundo-Jones-Peatfield'08).
- $\langle G, \cdot \rangle \equiv \langle \mathbb{L}G, \cdot \rangle$ (Hrushovski-Peterzil-Pillay'09).



Theorem 8

Berarducci-Ot.-Mamino'09

$$\pi_n(G)\cong\pi_n(\mathbb{L}G)$$

for all n > 0. (LHS: o-minimal homotopy; RHS: topological homotopy.)

Cases of the proof

- G Abelian.
- G semisimple.
- General case.

Abelian case

Proof of $\pi_n(G) \cong \pi_n(\mathbb{L}G)$

G Abelian

n = 1:

$$\pi_1(G)\cong\mathbb{Z}^{\dim G}$$

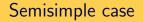
(Edmundo-Ot.'04). Pillays' conjecture implies that $\mathbb{L}G$ is a torus of Lie dimension $\dim G$, hence $\pi_1(\mathbb{L}G) \cong \mathbb{Z}^{\dim G}$.

n > 1:

•
$$\pi_n(G) = 0$$
 by Cor.1 to Thm. 6, and

• $\pi_n(\mathbb{L}G) = 0$ for n > 1, since $\mathbb{L}G$ is a torus (and $\pi_n(S^1) = 0$).

Proof of $\pi_n(G) \cong \pi_n(\mathbb{L}G)$



G semisimple

(1) WLOG

G = G(M)

a semialgebraic group defined w/out parameters (Edmundo-Jones-Peatfield'07, Peterzil-Pillay-Starchenko'02).(2)

 $\mathbb{L}G = G(\mathbb{R})$

```
(Hrushovski-Peterzil-Pillay'08).
(3) \pi_n(G) \cong \pi_n(\mathbb{L}G)
```

by Cor. to Thm 5.

Proof of thm 8: $\pi_n(G) \cong \pi_n(\mathbb{L}G)$

The structure theorem

General case

Hrushovski-Peterzil-Pillay'09

- (1) [G:G] is definable, definably connected and semisimple.
- (2) G is an almost direct product of [G : G] and $Z(G)^0$, *i.e.* the homomorphism

$$p: [G:G] \times Z(G)^0 \to G: (g,h) \mapsto gh$$

is a definable covering map.

Theorem 9

Baro'09

G and $[G:G] \times Z(G)^0$ have the same o-minimal homotopy type.

In general, the above map p cannot be used to establish a definable homotopy equivalence between $[G : G] \times Z(G)^0$ and G. This also ends the proof of Thm 8.