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Examples
1. Fundamental Example. AssumeM = (M, ...) is a struc-

ture, and a topology is given on M . We consider the prod-
uct topology on cartesian powers Mn. If D ⊆ Mn is a
definable set, then we can set:

open subset = relatively open, definable subset;
admissible covering = essentially finite covering.

Each such D becomes a small gts.

2. “The subanalytic site”. If M is a real analytic manifold,
then we can set:

open subset = open subanalytic subset;
admissible covering = covering that is essentially finite

on compact subsets.
We get a locally small gts.

3. Some metic spaces. If a metric space (X, d) satisfies the
ball property
(BP) each intersection of two open balls is a finite union
of open balls,
then X has a natural generalized topology, where: Y is
an open subset of X if the trace of Y on each open ball
is a finite union of open balls, and an open covering is
admissible if it is essentially finite on each open ball. Then
open balls are small sets. The covering of the space by all
open balls is admissible (each small set is covered by one
open ball), and X is a locally small gts satisfying the first
axiom of countability.

4. Infinite discrete small spaces. On any infinite set X , there
is still a generalized topology making X a discrete small
gts. It is enough to set: an open subset is any subset, an ad-
missible family is any essentially finite family. (Remember
that all small subsets of the topological space R are finite.)

5. Weakly discrete spaces Let X be an infinite gts where the
open sets are finite sets or the whole space, and the ad-
missible coverings are exactly the essentially finite open
families. Then X is a weakly discrete space, weakly (not
strongly) T1. The generated topology is discrete.

6. Real lines. The topological real line R may be given four
locally semialgebraic space structures: the affine semial-
gebraic space R, the "localized" space Rloc =

a⋃
n∈N (−n, n),

and the "half-localized" spaces Rloc,+ =
a⋃

n∈N (−∞, n),

Rloc,− =
a⋃

n∈N (−n, +∞).

Facts about Space(M)

Assume that a topology on M is given. An affine definable
space over M is a space isomorphic to a gts as in Funda-
mental Example with the function sheaf of continuous de-
finable functions. We get also definable, locally definable
and weakly definable spaces over M. They form full sub-
categories ADS(M), DS(M), LDS(M), WDS(M) of the
category Space(M). By WDS1(M) we denote the full sub-
category of (just) T1 objects of WDS(M). For each such
structureM:

1. finite products exist in ADS(M), LDS(M), WDS1(M);

2. the categories LDS(M) and WDS1(M) have fiber prod-
ucts;

3. for an object of LDS(M) or WDS1(M), the following
conditions are equivalent: being weakly Hausdorff, being
strongly Hausdorff, having the diagonal closed.

If R is an o-minimal expansion of a field, then "definable"
overR versions of arbitrary CW-complexes may be constructed.
Then the homotopy categories of topological, semialgebraic,
and definable CW-complexes are equivalent.

Spaces over structures
Assume thatM is any (first order) model-theoretic structure.

A function sheaf overM on a gts X is a sheaf OX of sets on
X (the sheaf property is assumed only for admissible cover-
ings) such that for each open U the set OX(U) is contained in
the set MU of all functions from U into M , and the restrictions
of the sheaf are the set-theoretical restrictions of functions.

A space overM is a pair (X, OX), where X is a gts and OX

is a function sheaf overM on X .

A morphism f : (X, OX) → (Y, OY ) of spaces overM is a
strictly continuous mapping f : X → Y such that for each
open subset V of Y the substitution h 7→ h ◦ f gives the map-
ping f#

V : OY (V ) → OX(f−1(V )). (We could informally say
that f# : OY → OX is the “morphism of function sheaves”
overM induced by f or define for function sheaves

(f∗OX)(V ) = {h : V → R| h ◦ f ∈ OX(f−1(V ))}

and get the inclusion of function sheaves f# : OY → f∗OX.)

For each structureM, the category Space(M) of spaces over
M and their morphisms has inductive limits.

Facts about GTS
1. The category GTS has any colimits.

2. The main new notion is that of a small set.
We call a subset K of a gts M small if for each admissible covering
of any open U , the set K ∩ U has a finite subcovering. (We say that
the covering is essentially finite on K ∩ U or just on K). A subset of
a small set is small. The image of a small set by a strictly continuous
mapping is small.

3. Importatnt spaces: locally small and weakly small are "built
up" from small spaces by open "admissible coverings" or
closed "exhaustions". In a small space “admissible” means
”essentially finite”. In a locally small space “admissible”
means “locally essentially finite”. In a weakly small space
“admissible” means “piecewise essentially finite”.

4. The notions of being weakly T1 (neighborhood separation)
and strongly T1 (all singletons closed) need to be distin-
guished. Similarly with further separation axioms.

5. Products exist in a full subcategory SS of small spaces. Fi-
nite products exist in full subcategories LSS of locally small
spaces and WSS1 of strongly T1 weakly small spaces.

6. There are different kinds of discrete sets: weakly discrete
(singletons are open), discrete (all sets are open) and topo-
logical discrete (all families are admissible).

7. Each open subset and each small subset of a gts may be
treated as a subspace.

8. In a locally small space the strong topology is the topol-
ogy generated by the open sets of the generalized topology.
Members of this topology are called weakly open subsets.
In a weakly small space the strong topology is the topology
in which the space is the inductive limit of its "pieces" con-
sidered with their strong topologies. Each connected com-
ponent of a locally small or weakly small space is weakly
closed.

9. We get functors: the generated (strong) topology functor
top : LSS → Top, and the strong topology functor stop :
WSS1→ Top.

Morphisms
A stricly continuous mapping between gtses is such a map-
ping that the preimage of an open set is an open set and the
preimage of an admissible covering is an admissible covering.
(They are just morphisms of sites in this context.) The gtses
together with the strictly continuous mappings form a cate-
gory called GTS. The usual topological category Top is a full
subcategory of GTS.

Axioms
A generalized topological space is a system

(M, Op(M), {CovM(U)}U∈Op(M))

where M is a set, Op(M) is a family of subsets of M called
open subsets and CovM(U) for an open U is a family of open
families (called admissible coverings of U ) such that the fol-
lowing axioms are satisfied:

Naturality: each admissible covering is a covering of its union
(if {Ui}i∈I ∈ CovM (U), then

⋃
i∈I Ui = U );

Finiteness: open sets are stable under finite (including empty)
unions and intersections, finite families are admissible cov-
erings of their unions (∅, M ∈ Op(M); if U1, U2 ∈ Op(M), then
U1 ∪ U2, U1 ∩ U2 ∈ Op(M); if {Ui}i∈I ⊂ Op(M) and I is finite, then
{Ui}i∈I ∈ CovM (

⋃
i∈I Ui));

Stability: traces of an open set on members of an admissible
covering form an admissible covering (if {Ui}i∈I ∈ CovM (U) and
V ∈ Op(M), then {V ∩ Ui}i∈I ∈ CovM (V ∩ U));

Transitivity: admissible coverings of members of an admissi-
ble covering form together an admissible covering (if {Ui}i∈I ∈
CovM (U) and for each i ∈ I there is {Vij}j∈Ji

∈ CovM (Ui), then {Vij} i∈I

j∈Ji

∈

CovM (U));

Saturation: an open family that has a refinement being an
admissible covering of their common union is an admissible
covering (if {Ui}i∈I ⊂ Op(M), U =

⋃
i∈I Ui, {Vj}j∈J ∈ CovM (U),

and ∀j ∈ J ∃i ∈ I : Vj ⊆ Ui, then {Ui}i∈I ∈ CovM (U));

Regularity: a subset of the union of an admissible covering
is open if its traces on members of the admissible covering are
open (if {Ui}i∈I ∈ CovM (U), V ⊆ U and V ∩ Ui ∈ Op(M) for each i,
then V ∈ Op(M)).
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Będlewo, 9-14 August 2009

Generalized Topological Spaces


