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Definition

A complete, countable theory T is classifiable if it is superstable
and there is a prime and minimal model M∗ over any independent
triple (M0,M1,M2) of models.
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Theorem (Shelah, Shelah-Buechler)

A countable, complete theory T is classifiable if and only if every
N |= T is prime and minimal over an independent tree
{Mη : η ∈ I} of countable na-substructures.

M ⊆na N means M � N and for all M-definable D and all finite
F ⊆ M, if DN \ acl(F ) is nonempty, then so is DM \ acl(F ).
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Theorem (Hart,Hrushovski,L)

For any countable, complete theory T with an infinite model, the uncountable

spectrum ℵα 7→ I (T ,ℵα) (α > 0) is the minimum of the map ℵα 7→ 2ℵα and one of

the following maps:
1. 2ℵα ;
2. id+1(|α + ω|) for some d, ω ≤ d < ω1;

3. id−1(|α + ω|2
ℵ0

) for some d, 0 < d < ω;

4. id−1(|α + ω|ℵ0 + i2) for some d, 0 < d < ω;

5. id−1(|α + ω| + i2), for some d, 0 < d < ω;

6. id−1(|α + ω|ℵ0 ), for some d, 0 < d < ω;

7. id−1(|α + ω| + 2ℵ0 ), for some d, 1 < d < ω;

8. id−1(|α + ω|), for some d, 0 < d < ω;

9. id−2(|α + ω||α+1|), for some d, 1 < d < ω;

10. identically i2;

11.

{
|(α + 1)n/∼G | − |αn/∼G | α < ω; for some 1 < n < ω and

|α| α ≥ ω; some group G ≤ Sym(n)
12. identically 1.
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Fine structure question: If M is a node on a decomposition tree,
how much freedom do we have in choosing a ‘successor’ N ⊇ M ?
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Fine structure question: If M is a node on a decomposition tree,
how much freedom do we have in choosing a ‘successor’ N ⊇ M ?

Necessarily M ⊆na N and our construction requires that N/M have
weight 1.
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Fine structure question: If M is a node on a decomposition tree,
how much freedom do we have in choosing a ‘successor’ N ⊇ M ?

Necessarily M ⊆na N and our construction requires that N/M have
weight 1.

Fact: All of the ‘algebraic information’ of a model is stored ‘at the
top nodes’ of a decomposition.
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Fine structure question: If M is a node on a decomposition tree,
how much freedom do we have in choosing a ‘successor’ N ⊇ M ?

Necessarily M ⊆na N and our construction requires that N/M have
weight 1.

Fact: All of the ‘algebraic information’ of a model is stored ‘at the
top nodes’ of a decomposition.

Definition

A weight one extension N/M has depth 0 if any non-algebraic
q ∈ S(N) is nonorthogonal to M.

Theorem (Shelah)

If N/M is nonorthogonal to a nontrivial type, then N/M has depth
0.
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Global assumption: For the whole of this talk, T is countable and
classifiable. Throughout, we work in Ceq.

Fix countable models M ⊆na N, such that N/M is weight 1 and of
depth 0.
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Global assumption: For the whole of this talk, T is countable and
classifiable. Throughout, we work in Ceq.

Fix countable models M ⊆na N, such that N/M is weight 1 and of
depth 0.

Facts:

There is a regular p ∈ S(M) realized in N, say by a;

N is dominated by a over M; and

N is minimal over Ma.

Questions:
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Global assumption: For the whole of this talk, T is countable and
classifiable. Throughout, we work in Ceq.

Fix countable models M ⊆na N, such that N/M is weight 1 and of
depth 0.

Facts:

There is a regular p ∈ S(M) realized in N, say by a;

N is dominated by a over M; and

N is minimal over Ma.

Questions:

Can we find a strongly regular p ∈ S(M) realized in N ?
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Global assumption: For the whole of this talk, T is countable and
classifiable. Throughout, we work in Ceq.

Fix countable models M ⊆na N, such that N/M is weight 1 and of
depth 0.

Facts:

There is a regular p ∈ S(M) realized in N, say by a;

N is dominated by a over M; and

N is minimal over Ma.

Questions:

Can we find a strongly regular p ∈ S(M) realized in N ?

Is N prime over Ma for some a ∈ N ?
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Global assumption: For the whole of this talk, T is countable and
classifiable. Throughout, we work in Ceq.

Fix countable models M ⊆na N, such that N/M is weight 1 and of
depth 0.

Facts:

There is a regular p ∈ S(M) realized in N, say by a;

N is dominated by a over M; and

N is minimal over Ma.

Questions:

Can we find a strongly regular p ∈ S(M) realized in N ?

Is N prime over Ma for some a ∈ N ?

If both answers are YES, then N/M is ‘ω-stable-like’.
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Analyze this via the ‘usual trichotomy’ of regular types:
p non-locally modular ‘geometric’
p locally modular, nontrivial ‘linear’
p trivial
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N/M non-locally modular

Theorem (Hrushovski-Shelah)

If p is a non-locally modular, stationary regular type, then p is
strongly regular.
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N/M non-locally modular

Theorem (Hrushovski-Shelah)

If p is a non-locally modular, stationary regular type, then p is
strongly regular.

Corollary

If N/M is weight 1, non-orthogonal to a non-locally modular
regular type, then N is prime and minimal over Ma for any a ∈ N
such that tp(a/M) is regular.
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N/M non-locally modular

A generalization:

Theorem

If a stationary q ∈ S(A) is p-semiregular (i.e., q domination
equivalent to p(n) for some n) then q is strongly p-semiregular i.e.,
there is a formula θ ∈ q such that for any B ⊇ A, any r ∈ S(B)
containing θ, EITHER wp(r) < n OR r is the nonforking extension
of q to S(B).
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N/M non-locally modular

A generalization:

Theorem

If a stationary q ∈ S(A) is p-semiregular (i.e., q domination
equivalent to p(n) for some n) then q is strongly p-semiregular i.e.,
there is a formula θ ∈ q such that for any B ⊇ A, any r ∈ S(B)
containing θ, EITHER wp(r) < n OR r is the nonforking extension
of q to S(B).

Corollary

If G is a p-semiregular group with p non-locally modular, then G is
connected by finite (i.e., the connected component G 0 has finite
index in G).
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N/M nonorthogonal to a locally modular, nontrivial
regular type p

In this case, there is a definable group controlling p.
Suppose G is an M-definable group, whose generics are locally
modular and regular, 6⊥ p. Then:

G0 = {g ∈ G : wp(g/M) = 0} is a subgroup of G (typically
∨-definable)
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N/M nonorthogonal to a locally modular, nontrivial
regular type p

In this case, there is a definable group controlling p.
Suppose G is an M-definable group, whose generics are locally
modular and regular, 6⊥ p. Then:

G0 = {g ∈ G : wp(g/M) = 0} is a subgroup of G (typically
∨-definable)

G is abelian (Poizat)
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N/M nonorthogonal to a locally modular, nontrivial
regular type p

In this case, there is a definable group controlling p.
Suppose G is an M-definable group, whose generics are locally
modular and regular, 6⊥ p. Then:

G0 = {g ∈ G : wp(g/M) = 0} is a subgroup of G (typically
∨-definable)

G is abelian (Poizat)

There is a division ring E of Clp(M)-definable
quasi-endomorphisms S ⊆ G × G of p-weight 1 that describes
forking on G 0 \ G1 (where G1 = G 0 ∩ G0) i.e., Each S gives
rise to an endomorphism fS : G 0/G1 → G 0/G1 and

{g1, . . . , gn} are forking independent⇔
{g1 + G1, . . . , gn + G1} are E -linearly independent
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Another dichotomy

Definition

A locally modular, regular type p is limited if each endomorphism
fS is represented by an M-definable S ⊆ G × G .

Note: Every minimal locally modular regular type is limited.
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Example

E any division ring, LE = {+, 0, ·e}e∈E , V any (infinite) E -vector
space. Then p(x) = {x 6= 0} is regular, locally modular and
limited. The quasi-endomorphism ring is precisely E .
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Example

E any division ring, LE = {+, 0, ·e}e∈E , V any (infinite) E -vector
space. Then p(x) = {x 6= 0} is regular, locally modular and
limited. The quasi-endomorphism ring is precisely E .

Example

A two-sorted structure with sorts F and V .
L = {F ,V ,+F , ·F , 0F , 1F , 0V ,+V , g}. F is a field imposing an
F -vector space structure on V via g , i.e., g(f , v) is scalar
multiplication by f . The type p(x) = {V (x), x 6= 0} is regular and
locally modular, but not limited. The endomorphism ring E is
isomorphic to F , and is represented by g(f , ·) for f ∈ F . Note that
F ⊆ Clp(∅).
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Unlimited, locally modular types

Theorem (Loveys)

(T stable) Let G be an M-definable group, whose principal generic
p is regular, locally modular, but not limited. Then there is an
M-definable subgroup H ⊆ G of finite index, and a
Clp(M)-definable subgroup K ⊆ H of p-weight 0 such that H/K is
connected.
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Corollary

If p ∈ S(M) is regular, locally modular, but not limited, then for
any a |= p, there is a′ ∈ acl(Ma) \M such that a′/M is strongly
regular.
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Corollary

If p ∈ S(M) is regular, locally modular, but not limited, then for
any a |= p, there is a′ ∈ acl(Ma) \M such that a′/M is strongly
regular.

In our context:

Corollary

If N/M is weight 1, nonorthogonal to a locally modular, not
limited regular type, then there is a ∈ N \M such that tp(a/M) is
strongly regular, and N is prime and minimal over Ma.
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On the other hand...

Theorem

Suppose G is an M-definable group with limited, locally modular,
regular generic types. Then the division ring E of
quasi-endomorphisms describes forking on all of G \ G0:
Each quasi-endomorphism S induces an endomorphism
f ∗S : G/G0 → G/G0 and on G \ G0,

{g1, . . . , gn} are forking independent⇔
{g1 + G0, . . . , gn + G0} are E -linearly independent
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Theorem

If Th(M) is classifiable and G is an M-definable group with
limited, locally modular, regular generic types, then the expansion
M∗ = (M, . . . ,G0) formed by adding a predicate for the
non-generic elements of G remains classifiable.
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The main case: M ⊆na N countable, N/M weight 1,
nonorthogonal to a limited, locally modular regular type p.
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The main case: M ⊆na N countable, N/M weight 1,
nonorthogonal to a limited, locally modular regular type p.

In this case, easy examples show that there need not be a strongly
regular type 6⊥ p.
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The main case: M ⊆na N countable, N/M weight 1,
nonorthogonal to a limited, locally modular regular type p.

In this case, easy examples show that there need not be a strongly
regular type 6⊥ p.

BUT...

Theorem (MISLEADING!)

There is a ∈ N, the generic of a group, such that N is prime and
minimal over Ma.
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Example

V a vector space over F2, with a family {Vn}n∈ω of independent
subspaces, each of codimension 1. Then there are no strongly
regular types, but if V ∗ is a weight 1 extension of V , then
V ∗ = acl(Va) for ANY a ∈ V ∗ \ V .
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Look at covers of V :
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Look at covers of V :

Example

Suppose we have the same V (with or without the subspaces), and
an infinite set X . Consider the two-sorted structure
(V ,X × V , 0V ,+V , π) where π(x , v) = v for all x ∈ X . Then the
fibers above each v ∈ V are orthogonal, contradicting NDOP
(prime models are not minimal).

To maintain minimality, we need a linkage between the fibers that
is controlled by an M-definable set W .
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Suppose that 0→W → (W × V )→ V → 0 is an exact sequence
of vector spaces over F2.

Code this as a three sorted structure with sorts W × V , V and W ,
along with the embedding of W into W × V and the projection
π : W × V → V . Endow W with independent subspaces {Wn},
each of finite index.

Suppose M ⊆ N with (b, a) ∈ N \M.

THEN: The element a is the generic of a group (namely V ), but N
is not prime over Ma.

However, the element (b, a) is the generic of a larger group
(W × V ) and N is prime over M ∪ {(b, a)}.
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There is no limit to the number of covers! There may be a
projective system of M-definable groups, each with regular, locally
modular, limited generic types.
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There is no limit to the number of covers! There may be a
projective system of M-definable groups, each with regular, locally
modular, limited generic types.

Theorem (almost true)

If N/M nonorthogonal to a limited, locally modular, regular type,
then N is prime and minimal over Ma, where a is a ∗-definable
element, and is generic for a projective limit of M-definable abelian
groups.
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There is no limit to the number of covers! There may be a
projective system of M-definable groups, each with regular, locally
modular, limited generic types.

Theorem (almost true)

If N/M nonorthogonal to a limited, locally modular, regular type,
then N is prime and minimal over Ma, where a is a ∗-definable
element, and is generic for a projective limit of M-definable abelian
groups.

In many cases, e.g., if T has finite U-rank, then the above IS a
theorem.
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Theorem

N/M nonorthogonal to a limited, locally modular, regular type. Let
T ∗ be the expansion of T formed by adding a predicate for G0, the
group of non-generics for every M-definable group G with regular,
locally modular, limited generics. Let G be a maximal, projective
system of M∗-definable (in T ∗) groups, each with locally modular,
limited, generics, and let a ∈ N be a ∗∗-definable generic for G .
Then N is prime and minimal over Ma.
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Ingredients in the proof:
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Ingredients in the proof:
• Enumerate N \Ma in ”semiregular batches” 〈Cα〉 i.e.,
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Ingredients in the proof:
• Enumerate N \Ma in ”semiregular batches” 〈Cα〉 i.e.,

for any finite d ∈ Cα, d/Ma{Cβ : β < α}) is pα-semiregular
for some regular type pα

Since N/M has depth 0, we may assume each pα ∈ S(M)

The essential U-rank E (pα) =smallest R∞-rank of a formula
nonorthogonal to pα is nondecreasing.

Each Cα is a maximal such subset of N.
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Suppose we have shown that C ∗α := Ma ∪
⋃
{Cβ : β < α} is atomic

over Ma and concentrate on tp(d/C ∗α), which is pα-semiregular for
some pα ∈ S(M).

Chris Laskowski University of Maryland Joint work with Elisabeth Bouscaren, Bradd Hart, and Udi Hrushovski

The fine structure of models of classifiable theories



Classifiable theories Non-locally modular regular types Unlimited, locally modular, regular types Limited, locally moduar, regular types

Suppose we have shown that C ∗α := Ma ∪
⋃
{Cβ : β < α} is atomic

over Ma and concentrate on tp(d/C ∗α), which is pα-semiregular for
some pα ∈ S(M).
• Since N/M is weight 1, d/C ∗α is almost orthogonal to pα, but is
not orthogonal to pα.
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Suppose we have shown that C ∗α := Ma ∪
⋃
{Cβ : β < α} is atomic

over Ma and concentrate on tp(d/C ∗α), which is pα-semiregular for
some pα ∈ S(M).
• Since N/M is weight 1, d/C ∗α is almost orthogonal to pα, but is
not orthogonal to pα.
THUS, pα is nontrivial, and moreover there is an M-definable
pα-semiregular group H for which d/C ∗α is the type of a torsor.
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Split into cases:
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Split into cases:

If pα is non-locally modular or locally modular, unlimited, then we
may take H to be connected, hence d/C ∗α is isolated.
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Split into cases:

If pα is non-locally modular or locally modular, unlimited, then we
may take H to be connected, hence d/C ∗α is isolated.

We are left with the case that pα is locally modular and limited.
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Split into cases:

If pα is non-locally modular or locally modular, unlimited, then we
may take H to be connected, hence d/C ∗α is isolated.

We are left with the case that pα is locally modular and limited.

In this case, we prove a pair of group covering theorems.
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A variant on V -domination:

Definition

Suppose B ⊇ Ma is countable and atomic. The type c/B is
G -dominated if, for all g ∈ G generic, for all N independent from
Bcg over M, for all N1 dominated by g over N, and all N2

dominated by a + g over N, we have tp(c/BN1N2) does not fork
over B.
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A variant on V -domination:

Definition

Suppose B ⊇ Ma is countable and atomic. The type c/B is
G -dominated if, for all g ∈ G generic, for all N independent from
Bcg over M, for all N1 dominated by g over N, and all N2

dominated by a + g over N, we have tp(c/BN1N2) does not fork
over B.

Since T classifiable, c/B G -dominated implies c/B isolated.
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Main point: If d/C ∗α is pα-semiregular for some limited, locally
modular pα, but is not G -dominated, then there is an M-definable
group G ′ properly projecting onto G , contradicting the maximality
of the projective system G .
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Main point: If d/C ∗α is pα-semiregular for some limited, locally
modular pα, but is not G -dominated, then there is an M-definable
group G ′ properly projecting onto G , contradicting the maximality
of the projective system G .

This breaks into two separate group cover theorems.
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Main point: If d/C ∗α is pα-semiregular for some limited, locally
modular pα, but is not G -dominated, then there is an M-definable
group G ′ properly projecting onto G , contradicting the maximality
of the projective system G .

This breaks into two separate group cover theorems.
• If no element of pα-weight zero is nonorthogonal to tp(a/M)
then this is akin to the ”usual” group existence theorem for locally
modular types. If T has finite U-rank then we are always in this
case.
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Main point: If d/C ∗α is pα-semiregular for some limited, locally
modular pα, but is not G -dominated, then there is an M-definable
group G ′ properly projecting onto G , contradicting the maximality
of the projective system G .

This breaks into two separate group cover theorems.
• If no element of pα-weight zero is nonorthogonal to tp(a/M)
then this is akin to the ”usual” group existence theorem for locally
modular types. If T has finite U-rank then we are always in this
case.
• In the second construction, we require that the subgroup H0 of
pα-nongeneric elements be M-definable. Here is where the
expansion of the language is used.
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There seem to be parallels with Buecher’s proof of Vaught’s
conjecture for theories of finite U-rank.
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Finally, what if N/M is depth 0, but trivial ?
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Finally, what if N/M is depth 0, but trivial ?

Conjecture

There is a ∈ N and b, the generic of a ∗∗-definable projective
system of groups such that N is prime and minimal over Mab.
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