Computable functions on the reals

Katrin Tent and Martin Ziegler Münster and Freiburg

Będlewo, August 2009

Definition (Kontsevich, Zagier)

Periods are values of absolutely convergent integrals over open semialgebraic subsets of \mathbb{R}^{n} of rational functions with rational coefficients.

Semialgebraic: definable in $(\mathbb{R},+, \cdot)$
In this talk always assume semialgebraic sets to be definable without parameters.
Open semialgebraic: $\left\{\bar{x}: \bigwedge_{i<k} p_{i}(\bar{x})>0, p_{i}(\bar{x}) \in \mathbb{Q}[\bar{X}]\right\}$.

Examples

$\pi \cdot a \cdot \ln (a) \cdot a \in @$ are periods

Definition (Kontsevich, Zagier)

Periods are values of absolutely convergent integrals over open semialgebraic subsets of \mathbb{R}^{n} of rational functions with rational coefficients.

Semialgebraic: definable in $(\mathbb{R},+, \cdot)$
In this talk always assume semialgebraic sets to be definable without parameters.
Open semialgebraic: $\left\{\bar{x}: \bigwedge_{i<k} p_{i}(\bar{x})>0, p_{i}(\bar{x}) \in \mathbb{Q}[\bar{X}]\right\}$.

Examples

$\pi, q, \ln (q), q \in \mathbb{Q}$ are periods.

Question
 What about $e, \frac{1}{\pi}$?

Clearly there are only countably many periods and they form a \mathbb{Q}-algebra.

Theorem (Yoshinaga)
 Periods are elementary real numbers.

Using diagonal arguments, one can construct non-elementary real numbers, so numbers which are not periods.

Question

What about e, $\frac{1}{\pi}$?

Clearly there are only countably many periods and they form a \mathbb{Q}-algebra.

Theorem (Yoshinaga)

Periods are elementary real numbers.

Using diagonal arguments, one can construct non-elementary real numbers, so numbers which are not periods.

Definition

A class \mathcal{F} of functions $f: \mathbb{N}^{n} \longrightarrow \mathbb{N}, n \in \mathbb{N}$, is called good if it contains
(1) the constant functions,
(2) the projections $\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{i}$,
(3) modified difference $x-y$.
and is closed under composition and bounded summation, i.e. if $g(\bar{x}, i) \in \mathcal{F}$, then also $f(\bar{x}, k)=\sum_{i=0}^{k} g(\bar{x}, i) \in \mathcal{F}$.
$f: \mathbb{N}^{n} \longrightarrow \mathbb{N}^{m}$ is in \mathcal{F} if each $f_{i}, i=1 \ldots n$ is.
The smallest good class is the class of low functions.

The smallest good class also closed under bounded products

$$
f(\bar{x}, y)=\prod_{i=0}^{y} g(\bar{x}, i)
$$

or - equivalently - the smallest good class which contains $n \mapsto 2^{n}$, is the class of elementary functions.
The elementary functions are the third class \mathcal{E}_{3} of the Grzegorczyk hierarchy.
We have:

$$
\text { LOW } \subsetneq \mathcal{E}_{2} \subsetneq \mathcal{E}_{3}=E L E M \subseteq \ldots \subsetneq \text { prim.rec. } \subsetneq \text { rec }
$$

f low $\Rightarrow f(n) \leq n^{k}$ for some k, i.e. polynomially bounded.
f elementary $\Rightarrow f$ hyperexponentially bounded.

The smallest good class also closed under bounded products

$$
f(\bar{x}, y)=\prod_{i=0}^{y} g(\bar{x}, i)
$$

or - equivalently - the smallest good class which contains $n \mapsto 2^{n}$, is the class of elementary functions.
The elementary functions are the third class \mathcal{E}_{3} of the Grzegorczyk hierarchy.
We have:

$$
\text { LOW } \subsetneq \mathcal{E}_{2} \subsetneq \mathcal{E}_{3}=E L E M \subseteq \ldots \subsetneq \text { prim.rec. } \subsetneq \text { rec }
$$

f low $\Rightarrow f(n) \leq n^{k}$ for some k, i.e. polynomially bounded.
f elementary $\Rightarrow f$ hyperexponentially bounded.

Coding countable sets

Call a set X an \mathcal{F}-retract $\left(\right.$ of $\left.\mathbb{N}^{n}\right)$ if there are functions $\iota: X \rightarrow \mathbb{N}^{n}$ and $\pi: \mathbb{N}^{n} \rightarrow X$ with $\pi \circ \iota=\mathrm{id}$ and $\iota \circ \pi \in \mathcal{F}$.

We define a function $f: X \rightarrow X^{\prime}$ to be in \mathcal{F} if $\iota^{\prime} \circ f \circ \pi: \mathbb{N}^{n} \rightarrow \mathbb{N}^{n^{\prime}}$ is.
\mathbb{Z} is a low retract of \mathbb{N} in a canonical way. We turn \mathbb{Q} into a low retract of $\mathbb{Z} \times \mathbb{N}$ by setting $\iota(r)=(z, n)$, where $\frac{z}{n}$ is the unique representation of r with $n>0$ and $(z, n)=1$. Define $\pi(z, n)$ as $\frac{z}{n}$ if $n>0$ and as 0 otherwise.

Computable reals

Definition
 A number $\alpha \in \mathbb{R}$ is \mathcal{F}-computable if there is an \mathcal{F}-function $f: \mathbb{N} \longrightarrow \mathbb{Q}$ with $|f(k)-\alpha|<\frac{1}{k}$.

(Unfortunately,) many 'natural' numbers are low: π, e etc (Skordev, 2008)

Computable reals

> Definition
> A number $\alpha \in \mathbb{R}$ is \mathcal{F}-computable if there is an \mathcal{F}-function $f: \mathbb{N} \longrightarrow \mathbb{Q}$ with $|f(k)-\alpha|<\frac{1}{k}$.
(Unfortunately,) many 'natural' numbers are low: π, e etc (Skordev, 2008)

Computable functions

Notation: For $O \subseteq \mathbb{R}^{n}$ open and $k \in \mathbb{N}$ define

$$
O_{k}=\left\{\bar{x} \in O:|x| \leq k, \operatorname{dist}\left(\mathbb{R}^{n} \backslash O, \bar{x}\right) \leq 1 / k\right\}
$$

Then O_{k} is compact and

Definition

have

Computable functions

Notation: For $O \subseteq \mathbb{R}^{n}$ open and $k \in \mathbb{N}$ define

$$
O_{k}=\left\{\bar{x} \in O:|x| \leq k, \operatorname{dist}\left(\mathbb{R}^{n} \backslash O, \bar{x}\right) \leq 1 / k\right\}
$$

Then O_{k} is compact and

$$
O=\bigcup_{k \in \mathbb{N}} O_{k} .
$$

Definition

have

Computable functions

Notation: For $O \subseteq \mathbb{R}^{n}$ open and $k \in \mathbb{N}$ define

$$
O_{k}=\left\{\bar{x} \in O:|x| \leq k, \operatorname{dist}\left(\mathbb{R}^{n} \backslash O, \bar{x}\right) \leq 1 / k\right\}
$$

Then O_{k} is compact and

$$
O=\bigcup_{k \in \mathbb{N}} O_{k}
$$

Definition

The function $F: O \longrightarrow \mathbb{R}$ is \mathcal{F}-computable if there are \mathcal{F}-functions $d: \mathbb{N} \longrightarrow \mathbb{N}$ and $f: \mathbb{Q}^{n} \times \mathbb{N} \longrightarrow \mathbb{Q}$ such that for all $x \in O_{k}, a \in \mathbb{Q}^{n}$ we have

$$
\begin{equation*}
|x-a|<\frac{1}{d(k)} \Rightarrow|F(x)-f(a, k)|<\frac{1}{k} . \tag{0.1}
\end{equation*}
$$

Properties of \mathcal{F}-computable functions

(1) \mathcal{F}-computable functions are continuous.
(2) \mathcal{F}-computable functions take \mathcal{F}-reals to \mathcal{F}-reals. If $|\alpha-g(k)|<1 / k$ and f, d are witnesses for F to be in \mathcal{F}, then $|F(\alpha)-f(g(d(k)), k)|<1 / k$ for sufficiently large k.
(- \mathcal{F}-computable functions are (somewhat) closed under composition: if $F, G \in \mathcal{F}$, then $F \circ G \in \mathcal{F}$ if F is uniformly in \mathcal{F}, i.e. if for $x \in O,|x| \leq k, a \in \mathbb{Q}^{n}$ we have

$$
|x-a|<\frac{1}{d(k)} \Rightarrow|F(x)-f(a, k)|<\frac{1}{k} .
$$

Note that there is an \mathcal{F}-function β with $\left|G\left(O_{k}\right)\right|<\beta(k)$.

Properties of \mathcal{F}-computable functions

(1) \mathcal{F}-computable functions are continuous.
(2) \mathcal{F}-computable functions take \mathcal{F}-reals to \mathcal{F}-reals.

Note that there is an \mathcal{F}-function β with $\left|G\left(O_{k}\right)\right|<\beta(k)$.

Properties of \mathcal{F}-computable functions

(1) \mathcal{F}-computable functions are continuous.
(2) \mathcal{F}-computable functions take \mathcal{F}-reals to \mathcal{F}-reals.

If $|\alpha-g(k)|<1 / k$ and f, d are witnesses for F to be in \mathcal{F},
$|F(\alpha)-f(g(d(k)), k)|<1 / k$ for sufficiently large k
(3) \mathcal{F}-computable functions are (somewhat) closed under composition: if $F, G \in \mathcal{F}$, then $F \circ G \in \mathcal{F}$ if F is uniformly in \mathcal{F}, i.e. if for $x \in O,|x| \leq k, a \in \mathbb{Q}^{n}$ we have

Note that there is an \mathcal{F}-function β with $\left|G\left(O_{k}\right)\right|<\beta(k)$.

Properties of \mathcal{F}-computable functions

(1) \mathcal{F}-computable functions are continuous.
(2) \mathcal{F}-computable functions take \mathcal{F}-reals to \mathcal{F}-reals.

If $|\alpha-g(k)|<1 / k$ and f, d are witnesses for F to be in \mathcal{F}, then $|F(\alpha)-f(g(d(k)), k)|<1 / k$ for sufficiently large k.

Note that there is an \mathcal{F}-function β with $\left|G\left(O_{k}\right)\right|<\beta(k)$.

Properties of \mathcal{F}-computable functions

(1) \mathcal{F}-computable functions are continuous.
(2) \mathcal{F}-computable functions take \mathcal{F}-reals to \mathcal{F}-reals.

If $|\alpha-g(k)|<1 / k$ and f, d are witnesses for F to be in \mathcal{F}, then
$|F(\alpha)-f(g(d(k)), k)|<1 / k$ for sufficiently large k.
(3) \mathcal{F}-computable functions are (somewhat) closed under composition:

Note that there is an \mathcal{F}-function β with $\left|G\left(O_{k}\right)\right|<\beta(k)$.

Properties of \mathcal{F}-computable functions

(1) \mathcal{F}-computable functions are continuous.
(2) \mathcal{F}-computable functions take \mathcal{F}-reals to \mathcal{F}-reals.

If $|\alpha-g(k)|<1 / k$ and f, d are witnesses for F to be in \mathcal{F}, then $|F(\alpha)-f(g(d(k)), k)|<1 / k$ for sufficiently large k.
(3) \mathcal{F}-computable functions are (somewhat) closed under composition: if $F, G \in \mathcal{F}$, then $F \circ G \in \mathcal{F}$ if F is uniformly in \mathcal{F}, i.e. if for $x \in O,|x| \leq k, a \in \mathbb{Q}^{n}$ we have

$$
|x-a|<\frac{1}{d(k)} \Rightarrow|F(x)-f(a, k)|<\frac{1}{k}
$$

Note that there is an \mathcal{F}-function β with $\left|G\left(O_{k}\right)\right|<\beta(k)$.

Properties of \mathcal{F}-computable functions

(1) \mathcal{F}-computable functions are continuous.
(2) \mathcal{F}-computable functions take \mathcal{F}-reals to \mathcal{F}-reals.

If $|\alpha-g(k)|<1 / k$ and f, d are witnesses for F to be in \mathcal{F}, then $|F(\alpha)-f(g(d(k)), k)|<1 / k$ for sufficiently large k.
(3) \mathcal{F}-computable functions are (somewhat) closed under composition: if $F, G \in \mathcal{F}$, then $F \circ G \in \mathcal{F}$ if F is uniformly in \mathcal{F}, i.e. if for $x \in O,|x| \leq k, a \in \mathbb{Q}^{n}$ we have

$$
|x-a|<\frac{1}{d(k)} \Rightarrow|F(x)-f(a, k)|<\frac{1}{k}
$$

Note that there is an \mathcal{F}-function β with $\left|G\left(O_{k}\right)\right|<\beta(k)$.

Lemma 1

Continuous (0-definable) semialgebraic functions are low on semialgebraic open sets.

(Sketch of proof) Let O be open semialgebraic, F semialgebraic and

 continuous on O. On $O_{2 k}$, the smallest real valued function d with
is 0-definable and hence polynomially bounded. Also F is polynomially bounded. Hence for $a \in O_{2 k}$ we define $f(a, k)$ as the unique

with $F(a) \in\left[b, b+\frac{1}{2 k}\right)$. So if $x \in O_{k}$ with $|x-a|<\frac{1}{d(k)}$ we have $a \in O_{2 k}$

$$
F(x)-f(a, k)\left|\leq|F(x)-F(a)|+|F(a)-f(a, k)|<\frac{1}{k}\right.
$$

Lemma 1

Continuous (0-definable) semialgebraic functions are low on semialgebraic open sets.
(Sketch of proof) Let O be open semialgebraic, F semialgebraic and continuous on O. On $O_{2 k}$, the smallest real valued function d with

$$
|x-a|<\frac{1}{d(k)} \Rightarrow|F(x)-F(a)|<\frac{1}{2 k}
$$

is 0-definable and hence polynomially bounded. Also F is polynomially bounded.

Lemma 1

Continuous (0-definable) semialgebraic functions are low on semialgebraic open sets.
(Sketch of proof) Let O be open semialgebraic, F semialgebraic and continuous on O. On $O_{2 k}$, the smallest real valued function d with

$$
|x-a|<\frac{1}{d(k)} \Rightarrow|F(x)-F(a)|<\frac{1}{2 k}
$$

is 0-definable and hence polynomially bounded. Also F is polynomially bounded. Hence for $a \in O_{2 k}$ we define $f(a, k)$ as the unique

$$
b \in\left\{-k^{m},-k^{m}+\frac{1}{2 k}, \ldots, k^{m}-\frac{1}{2 k}, k^{m}\right\}
$$

with $F(a) \in\left[b, b+\frac{1}{2 k}\right)$.

Lemma 1

Continuous (0-definable) semialgebraic functions are low on semialgebraic open sets.
(Sketch of proof) Let O be open semialgebraic, F semialgebraic and continuous on O. On $O_{2 k}$, the smallest real valued function d with

$$
|x-a|<\frac{1}{d(k)} \Rightarrow|F(x)-F(a)|<\frac{1}{2 k}
$$

is 0-definable and hence polynomially bounded. Also F is polynomially bounded. Hence for $a \in O_{2 k}$ we define $f(a, k)$ as the unique

$$
b \in\left\{-k^{m},-k^{m}+\frac{1}{2 k}, \ldots, k^{m}-\frac{1}{2 k}, k^{m}\right\}
$$

with $F(a) \in\left[b, b+\frac{1}{2 k}\right)$. So if $x \in O_{k}$ with $|x-a|<\frac{1}{d(k)}$ we have $a \in O_{2 k}$ and

$$
|F(x)-f(a, k)| \leq|F(x)-F(a)|+|F(a)-f(a, k)|<\frac{1}{k}
$$

Integration Theorem

Theorem 2

Let $G, H: O \longrightarrow \mathbb{R}$ be \mathcal{F}-functions with $G<H$ on O. Put

$$
O_{G}^{H}=\{(\bar{x}, y): G(\bar{x})<y<H(\bar{x})\} .
$$

Let $F: O_{G}^{H} \longrightarrow \mathbb{R}$ be in \mathcal{F} and assume that $|F(\bar{x}, y)|<\beta(\bar{x})$ for some \mathcal{F}-function β.
Then

$$
I(x)=\int_{G(x)}^{H(x)} F(x, y) d y
$$

is an \mathcal{F}-function $O \rightarrow \mathbb{R}$.
Approximate Riemann integral. However, we cannot sum up series of rational numbers as a low function.

Integration Theorem

Theorem 2

Let $G, H: O \longrightarrow \mathbb{R}$ be \mathcal{F}-functions with $G<H$ on O. Put

$$
O_{G}^{H}=\{(\bar{x}, y): G(\bar{x})<y<H(\bar{x})\} .
$$

Let $F: O_{G}^{H} \longrightarrow \mathbb{R}$ be in \mathcal{F} and assume that $|F(\bar{x}, y)|<\beta(\bar{x})$ for some \mathcal{F}-function β.

is an \mathcal{F}-function $O \rightarrow \mathbb{R}$.
Approximate Riemann integral. However, we cannot sum up series of rational numbers as a low function.

Integration Theorem

Theorem 2

Let $G, H: O \longrightarrow \mathbb{R}$ be \mathcal{F}-functions with $G<H$ on O. Put

$$
O_{G}^{H}=\{(\bar{x}, y): G(\bar{x})<y<H(\bar{x})\} .
$$

Let $F: O_{G}^{H} \longrightarrow \mathbb{R}$ be in \mathcal{F} and assume that $|F(\bar{x}, y)|<\beta(\bar{x})$ for some \mathcal{F}-function β.
Then

$$
I(x)=\int_{G(x)}^{H(x)} F(x, y) \mathrm{d} y
$$

is an \mathcal{F}-function $O \rightarrow \mathbb{R}$.
Approximate Riemann integral. However, we cannot sum up series of rational numbers as a low function.

Integration Theorem

Theorem 2

Let $G, H: O \longrightarrow \mathbb{R}$ be \mathcal{F}-functions with $G<H$ on O. Put

$$
O_{G}^{H}=\{(\bar{x}, y): G(\bar{x})<y<H(\bar{x})\} .
$$

Let $F: O_{G}^{H} \longrightarrow \mathbb{R}$ be in \mathcal{F} and assume that $|F(\bar{x}, y)|<\beta(\bar{x})$ for some \mathcal{F}-function β.
Then

$$
I(x)=\int_{G(x)}^{H(x)} F(x, y) \mathrm{d} y
$$

is an \mathcal{F}-function $O \rightarrow \mathbb{R}$.
Approximate Riemann integral. However, we cannot sum up series of rational numbers as a low function.

Sums of rational numbers

Use:

Lemma

If $g: \mathbb{N}^{n+1} \rightarrow \mathbb{Q}$ is in \mathcal{F}, there is an \mathcal{F}-function $f: \mathbb{N}^{n} \times \mathbb{N}>0 \rightarrow \mathbb{Q}$ such that

$$
\left|f(x, y, k)-\sum_{i=0}^{y} g(x, i)\right|<\frac{1}{k}
$$

Periods

Theorem (T.-Z., Yoshinaga)

Periods are low reals.

Lemma (Yoshinaga)

Periods are differences of volumes of bounded open 0-definable semialgebraic sets.

Now the theorem follows from Lemma 1, Theorem 2 and Fubini.

Periods

Theorem (T.-Z., Yoshinaga)

Periods are low reals.

Lemma (Yoshinaga)

Periods are differences of volumes of bounded open 0-definable semialgebraic sets.

$$
\text { Now the theorem follows from Lemma 1, Theorem } 2 \text { and Fubini. }
$$

Periods

Theorem (T.-Z., Yoshinaga)

Periods are low reals.

Lemma (Yoshinaga)

Periods are differences of volumes of bounded open 0-definable semialgebraic sets.

Now the theorem follows from Lemma 1, Theorem 2 and Fubini.

Inverse Function Theorems

Theorem

Suppose c_{0}, c_{1} are \mathcal{F}-reals and $F: O=\left(c_{0}, c_{1}\right) \longrightarrow V \subseteq \mathbb{R}$ is a homeomorphism in \mathcal{F}. Then F^{-1} is in \mathcal{F} provided there is an \mathcal{F}-function $d^{\prime}: \mathbb{N} \longrightarrow \mathbb{N}$ such that for all $y, y^{\prime} \in V_{k}$

$$
\begin{equation*}
\left|y-y^{\prime}\right|<\frac{1}{d^{\prime}(k)} \Rightarrow\left|F^{-1}(y)-F^{-1}\left(y^{\prime}\right)\right|<1 / k \tag{0.2}
\end{equation*}
$$

Corollary

$\exp (x)$ is low on $(-\infty, r)$ for any $r \in \mathbb{R}$
(Sketch of proof) In: $(0, \exp (r)) \longrightarrow(-\infty, r)$ is low by Lemma 1 Theorem 2. As $\exp (x)$ is bounded on $(-\infty, r)$, it satisfies (0.2)

Inverse Function Theorems

Theorem

Suppose c_{0}, c_{1} are \mathcal{F}-reals and $F: O=\left(c_{0}, c_{1}\right) \longrightarrow V \subseteq \mathbb{R}$ is a homeomorphism in \mathcal{F}. Then F^{-1} is in \mathcal{F} provided there is an \mathcal{F}-function $d^{\prime}: \mathbb{N} \longrightarrow \mathbb{N}$ such that for all $y, y^{\prime} \in V_{k}$

$$
\begin{equation*}
\left|y-y^{\prime}\right|<\frac{1}{d^{\prime}(k)} \Rightarrow\left|F^{-1}(y)-F^{-1}\left(y^{\prime}\right)\right|<1 / k \tag{0.2}
\end{equation*}
$$

Corollary

$\exp (x)$ is low on $(-\infty, r)$ for any $r \in \mathbb{R}$.
(Sketch of proof) $\ln :(0, \exp (r)) \longrightarrow(-\infty, r)$ is low by Lemma 1 Theorem 2. As $\exp (x)$ is bounded on $(-\infty, r)$, it satisfies (0.2).

Inverse Function Theorems

Theorem

Suppose c_{0}, c_{1} are \mathcal{F}-reals and $F: O=\left(c_{0}, c_{1}\right) \longrightarrow V \subseteq \mathbb{R}$ is a homeomorphism in \mathcal{F}. Then F^{-1} is in \mathcal{F} provided there is an \mathcal{F}-function $d^{\prime}: \mathbb{N} \longrightarrow \mathbb{N}$ such that for all $y, y^{\prime} \in V_{k}$

$$
\begin{equation*}
\left|y-y^{\prime}\right|<\frac{1}{d^{\prime}(k)} \Rightarrow\left|F^{-1}(y)-F^{-1}\left(y^{\prime}\right)\right|<1 / k \tag{0.2}
\end{equation*}
$$

Corollary

$\exp (x)$ is low on $(-\infty, r)$ for any $r \in \mathbb{R}$.
(Sketch of proof) In: $(0, \exp (r)) \longrightarrow(-\infty, r)$ is low by Lemma 1 , Theorem 2.

$$
\text { As } \exp (x) \text { is bounded on }(-\infty, r) \text {, it satisfies (0.2). }
$$

Inverse Function Theorems

Theorem

Suppose c_{0}, c_{1} are \mathcal{F}-reals and $F: O=\left(c_{0}, c_{1}\right) \longrightarrow V \subseteq \mathbb{R}$ is a homeomorphism in \mathcal{F}. Then F^{-1} is in \mathcal{F} provided there is an \mathcal{F}-function $d^{\prime}: \mathbb{N} \longrightarrow \mathbb{N}$ such that for all $y, y^{\prime} \in V_{k}$

$$
\begin{equation*}
\left|y-y^{\prime}\right|<\frac{1}{d^{\prime}(k)} \Rightarrow\left|F^{-1}(y)-F^{-1}\left(y^{\prime}\right)\right|<1 / k \tag{0.2}
\end{equation*}
$$

Corollary

$\exp (x)$ is low on $(-\infty, r)$ for any $r \in \mathbb{R}$.
(Sketch of proof) In : $(0, \exp (r)) \longrightarrow(-\infty, r)$ is low by Lemma 1 , Theorem 2. As $\exp (x)$ is bounded on $(-\infty, r)$, it satisfies (0.2).

Corollary

If $\alpha \in \mathbb{R}$ is an \mathcal{F}-real so is $\exp (\alpha)$.

Corollary

The low reals form a real closed field of infinite transcendence degree.
(Sketch of proof) By Lemma 1, the low reals form a field.
As the real zeros of real polynomials are piecewise continuous in the coefficients, these piecewise functions and hence its values on low numbers are low, so the field is real closed.
If $a_{0}, \ldots a_{n}$ are \mathbb{Q}-linearly independent algebraic numbers, then $\exp \left(a_{0}\right), \ldots \exp \left(a_{n}\right)$ are low and algebraically independent by
Lindemann-Weierstraß.

Corollary

If $\alpha \in \mathbb{R}$ is an \mathcal{F}-real so is $\exp (\alpha)$.

Corollary

The low reals form a real closed field of infinite transcendence degree.

```
(Sketch of proof) By Lemma 1, the low reals form a field
As the real zeros of real polynomials are piecewise continuous in the
coefficients, these piecewise functions and hence its values on low numbers
are low, so the field is real closed
If a}\mp@subsup{a}{0}{},\ldots.\mp@subsup{a}{n}{}\mathrm{ are }\mathbb{Q}\mathrm{ -linearly independent algebraic numbers, then
exp}(\mp@subsup{a}{0}{}),\ldots\operatorname{exp}(\mp@subsup{a}{n}{})\mathrm{ are low and algebraically independent by
Lindemann-Weierstraß
```


Corollary

If $\alpha \in \mathbb{R}$ is an \mathcal{F}-real so is $\exp (\alpha)$.

Corollary

The low reals form a real closed field of infinite transcendence degree.
(Sketch of proof) By Lemma 1, the low reals form a field. As the real zeros of real polynomials are piecewise continuous in the coefficients, these piecewise functions and hence its values on low numbers are low, so the field is real closed.

```
If a0,\ldots.an are \mathbb{Q}\mathrm{ -linearly independent algebraic numbers, then}
exp}(\mp@subsup{a}{0}{}),\ldots\operatorname{exp}(\mp@subsup{a}{n}{})\mathrm{ are low and algebraically independent by
Lindemann-Weierstraß.
```


Corollary

If $\alpha \in \mathbb{R}$ is an \mathcal{F}-real so is $\exp (\alpha)$.

Corollary

The low reals form a real closed field of infinite transcendence degree.
(Sketch of proof) By Lemma 1, the low reals form a field. As the real zeros of real polynomials are piecewise continuous in the coefficients, these piecewise functions and hence its values on low numbers are low, so the field is real closed.
If $a_{0}, \ldots a_{n}$ are \mathbb{Q}-linearly independent algebraic numbers, then $\exp \left(a_{0}\right), \ldots \exp \left(a_{n}\right)$ are low and algebraically independent by Lindemann-Weierstraß.

Note that exp is not low on all of \mathbb{R}. However, by a variant of the Inverse Function Theorem, exp is elementary on \mathbb{R} :

In this way, we can also show that the complex function $\exp (z)$ is low on each half-space $\{z \mid \operatorname{Re}(z)<s\}$ and elementary on $\mathbb{C}\left(=\mathbb{R}^{2}\right)$.

Note that exp is not low on all of \mathbb{R}. However, by a variant of the Inverse Function Theorem, \exp is elementary on \mathbb{R} :

If $O \subseteq \mathbb{R}^{n}$ is \mathcal{F}-approximable and $F: O \longrightarrow V \subseteq \mathbb{R}^{m}$ is a homeomorphism in \mathcal{F} such that F^{-1} satisfies (0.2) and is \mathcal{F}-compact (i.e. for some $\beta \in \mathcal{F}$ we have $\left.F^{-1}\left(V_{k}\right) \subseteq O_{\beta(k)}\right)$, then $F^{-1} \in \mathcal{F}$.

In this way, we can also show that the complex function $\exp (z)$ is low on each half-space $\{z \mid \operatorname{Re}(z)<s\}$ and elementary on $\mathbb{C}\left(=\mathbb{R}^{2}\right)$.

Note that exp is not low on all of \mathbb{R}. However, by a variant of the Inverse Function Theorem, \exp is elementary on \mathbb{R} :

If $O \subseteq \mathbb{R}^{n}$ is \mathcal{F}-approximable and $F: O \longrightarrow V \subseteq \mathbb{R}^{m}$ is a homeomorphism in \mathcal{F} such that F^{-1} satisfies (0.2) and is \mathcal{F}-compact (i.e. for some $\beta \in \mathcal{F}$ we have $\left.F^{-1}\left(V_{k}\right) \subseteq O_{\beta(k)}\right)$, then $F^{-1} \in \mathcal{F}$.

In this way, we can also show that the complex function $\exp (z)$ is low on each half-space $\{z \mid \operatorname{Re}(z)<s\}$ and elementary on $\mathbb{C}\left(=\mathbb{R}^{2}\right)$.

Holomorphic functions

Proposition

Let $F(z)=\sum_{i=0}^{\infty} a_{i} z^{i}$ be a complex power series with radius of convergence ρ and let $0<b<\rho$ be an \mathcal{F}-real. Then F restricted to the open disc $\{z:|z|<b\}$ belongs to \mathcal{F} if and only if $\left(a_{i} b^{i}\right)_{i \in \mathbb{N}}$ is an \mathcal{F}-sequence of complex numbers.

Lemma (Speed-Up Lemma)

Suppose $\left(a_{n}\right) \in \mathbb{C}$ is a sequence and that $0<b<1$ is an \mathcal{F}-real. Then $\left(a_{n} b^{n}\right)$ is an \mathcal{F}-sequence if $\left(a_{n} b^{2 n}\right)$ is.

Theorem (Analytic Continuation)

Let F be a holomorphic function defined on an open domain $D \subset \mathbb{C}$. If F is in \mathcal{F} on some non-empty open subset of D, it is in \mathcal{F} on every compact subset of D

Holomorphic functions

Proposition

Let $F(z)=\sum_{i=0}^{\infty} a_{i} z^{i}$ be a complex power series with radius of convergence ρ and let $0<b<\rho$ be an \mathcal{F}-real. Then F restricted to the open disc $\{z:|z|<b\}$ belongs to \mathcal{F} if and only if $\left(a_{i} b^{i}\right)_{i \in \mathbb{N}}$ is an \mathcal{F}-sequence of complex numbers.

Lemma (Speed-Up Lemma)

Suppose $\left(a_{n}\right) \in \mathbb{C}$ is a sequence and that $0<b<1$ is an \mathcal{F}-real. Then $\left(a_{n} b^{n}\right)$ is an \mathcal{F}-sequence if $\left(a_{n} b^{2 n}\right)$ is.

Theorem (Analytic Continuation)

Let F be a holomorphic function defined on an open domain $D \subset \mathbb{C}$. If F is in \mathcal{F} on some non-empty open subset of D, it is in \mathcal{F} on every compact subset of D

Holomorphic functions

Proposition

Let $F(z)=\sum_{i=0}^{\infty} a_{i} z^{i}$ be a complex power series with radius of convergence ρ and let $0<b<\rho$ be an \mathcal{F}-real. Then F restricted to the open disc $\{z:|z|<b\}$ belongs to \mathcal{F} if and only if $\left(a_{i} b^{i}\right)_{i \in \mathbb{N}}$ is an \mathcal{F}-sequence of complex numbers.

Lemma (Speed-Up Lemma)

Suppose $\left(a_{n}\right) \in \mathbb{C}$ is a sequence and that $0<b<1$ is an \mathcal{F}-real. Then $\left(a_{n} b^{n}\right)$ is an \mathcal{F}-sequence if $\left(a_{n} b^{2 n}\right)$ is.

Theorem (Analytic Continuation)

Let F be a holomorphic function defined on an open domain $D \subset \mathbb{C}$. If F is in \mathcal{F} on some non-empty open subset of D, it is in \mathcal{F} on every compact subset of D.

Corollary

Let F be holomorphic on a punctured disk $D_{\bullet}=\{z|0<|z|<r\}$. If 0 is a pole of F and F is in \mathcal{F} on some non-empty open subset of D_{\bullet}, then F is \mathcal{F} on every proper punctured subdisc $D_{\bullet}^{\prime}=\left\{z\left|0<|z|<r^{\prime}\right\}\right.$.

Note that if 0 is an essential singularity of F, then F is not low on D_{0} as otherwise the absolute value of F on $\left\{z\left|0<|z|<\frac{1}{k}\right\}\right.$ would be bounded by a polynomial in k

Corollary

Let F be holomorphic on a punctured disk $D_{\bullet}=\{z|0<|z|<r\}$. If 0 is a pole of F and F is in \mathcal{F} on some non-empty open subset of D_{\bullet}, then F is \mathcal{F} on every proper punctured subdisc $D_{\bullet}^{\prime}=\left\{z\left|0<|z|<r^{\prime}\right\}\right.$.
(Sketch of proof) If 0 is a pole of order $k, F(z) z^{k}$ is holomorphic on $D=\{z|z|<r\}$. By the theorem $F(z) z^{k}$ is in \mathcal{F} on any disc $D^{\prime}=\left\{z:|z|<r^{\prime}\right\}, r^{\prime}<r$. Since z^{-k} is low on D_{\bullet}^{\prime}, F is in \mathcal{F} on D_{\bullet}^{\prime}.

Note that if 0 is an essential singularity of F, then F is not low on D_{0} as otherwise the absolute value of F on $\left\{z\left|0<|z|<\frac{1}{k}\right\}\right.$ would be bounded by a polynomial in k

Corollary

Let F be holomorphic on a punctured disk $D_{\bullet}=\{z|0<|z|<r\}$. If 0 is a pole of F and F is in \mathcal{F} on some non-empty open subset of D_{0}, then F is \mathcal{F} on every proper punctured subdisc $D_{\bullet}^{\prime}=\left\{z\left|0<|z|<r^{\prime}\right\}\right.$.
(Sketch of proof) If 0 is a pole of order $k, F(z) z^{k}$ is holomorphic on $D=\{z|z|<r\}$. By the theorem $F(z) z^{k}$ is in \mathcal{F} on any disc $D^{\prime}=\left\{z:|z|<r^{\prime}\right\}, r^{\prime}<r$. Since z^{-k} is low on D_{\bullet}^{\prime}, F is in \mathcal{F} on D_{\bullet}^{\prime}.

Note that if 0 is an essential singularity of F, then F is not low on D_{\bullet} as otherwise the absolute value of F on $\left\{z\left|0<|z|<\frac{1}{k}\right\}\right.$ would be bounded by a polynomial in k.

Zeta-function

Recall that for $\operatorname{Re}(z)>1$, the Riemann Zeta-function is given by

$$
\zeta(z)=\sum_{n=1}^{\infty} \frac{1}{n^{z}}
$$

Thus $\frac{1}{n^{2}},(n=1,2, \ldots)$ is a low sequence of functions defined on $\{z \mid \operatorname{Re}(z)>0\}$
With $t=\operatorname{Re}(z)$ we have the estimate

Then $\zeta(z)$ is low on every $\{z \mid \operatorname{Re}(z)>s\},(s>1)$.

Corollary

The Zeta function $\zeta(z)$ is low on any punctured disk $\{z|0<|z-1|<r\}$

Zeta-function

Recall that for $\operatorname{Re}(z)>1$, the Riemann Zeta-function is given by

$$
\zeta(z)=\sum_{n=1}^{\infty} \frac{1}{n^{z}}
$$

The function $\left(\frac{1}{x}\right)^{y}$ is low on $(1, \infty) \times\{z \mid \operatorname{Re}(z)>0\} \subseteq \mathbb{R} \times \mathbb{C}$.

Then $\zeta(z)$ is low on every $\{z \mid \operatorname{Re}(z)>s\},(s>1)$.

Corellary

The Zeta function $\zeta(z)$ is low on any punctured disk $\{z|0<|z-1|<r\}$

Zeta-function

Recall that for $\operatorname{Re}(z)>1$, the Riemann Zeta-function is given by

$$
\zeta(z)=\sum_{n=1}^{\infty} \frac{1}{n^{z}}
$$

The function $\left(\frac{1}{x}\right)^{y}$ is low on $(1, \infty) \times\{z \mid \operatorname{Re}(z)>0\} \subseteq \mathbb{R} \times \mathbb{C}$. Thus $\frac{1}{n^{2}},(n=1,2, \ldots)$ is a low sequence of functions defined on $\{z \mid \operatorname{Re}(z)>0\}$.
With $t=\operatorname{Re}(z)$ we have the estimate

Then $\zeta(z)$ is low on every $\{z \mid \operatorname{Re}(z)>s\},(s>1)$.

Corollary

The Zeta function $\zeta(z)$ is low on any punctured disk $\{z|0<|z-1|<r\}$

Zeta-function

Recall that for $\operatorname{Re}(z)>1$, the Riemann Zeta-function is given by

$$
\zeta(z)=\sum_{n=1}^{\infty} \frac{1}{n^{z}}
$$

The function $\left(\frac{1}{x}\right)^{y}$ is low on $(1, \infty) \times\{z \mid \operatorname{Re}(z)>0\} \subseteq \mathbb{R} \times \mathbb{C}$. Thus $\frac{1}{n^{2}},(n=1,2, \ldots)$ is a low sequence of functions defined on $\{z \mid \operatorname{Re}(z)>0\}$.
With $t=\operatorname{Re}(z)$ we have the estimate

$$
\left|\zeta(z)-\sum_{n=1}^{N} \frac{1}{n^{z}}\right| \leq \int_{N}^{\infty} \frac{1}{x^{t}} \mathrm{~d} x=\frac{1}{(t-1) N^{t-1}}
$$

Then $\zeta(z)$ is low on every $\{z \mid \operatorname{Re}(z)>s\},(s>1)$.
Corollary
The Zeta function $\zeta(z)$ is low on any punctured disk $\{z|0<|z-1|<r$

Zeta-function

Recall that for $\operatorname{Re}(z)>1$, the Riemann Zeta-function is given by

$$
\zeta(z)=\sum_{n=1}^{\infty} \frac{1}{n^{z}}
$$

The function $\left(\frac{1}{x}\right)^{y}$ is low on $(1, \infty) \times\{z \mid \operatorname{Re}(z)>0\} \subseteq \mathbb{R} \times \mathbb{C}$. Thus $\frac{1}{n^{2}},(n=1,2, \ldots)$ is a low sequence of functions defined on $\{z \mid \operatorname{Re}(z)>0\}$.
With $t=\operatorname{Re}(z)$ we have the estimate

$$
\left|\zeta(z)-\sum_{n=1}^{N} \frac{1}{n^{z}}\right| \leq \int_{N}^{\infty} \frac{1}{x^{t}} \mathrm{~d} x=\frac{1}{(t-1) N^{t-1}}
$$

Then $\zeta(z)$ is low on every $\{z \mid \operatorname{Re}(z)>s\}$, $(s>1)$.

Corollary

The Zeta function $\zeta(z)$ is low on any punctured disk $\{z|0<|z-1|<r\}$.

Gamma function and open questions

Similarly, the Gamma function

$$
\Gamma(z)=\int_{0}^{\infty} t^{-1+z} \exp (-t) \mathrm{d} t
$$

is low on every set $\{z:|z|<r\} \backslash S$ where $S=\{-n \mid n \in \mathbb{N}\}$ denotes the set of poles of Γ.
Since n ! grows too fast, Γ is not low on $\mathbb{C} \backslash S$.

Question

- Is $\zeta(z)$ elementary on $\mathbb{C} \backslash\{1\}$.
(not low because ∞ is an essential singularity)
- Is Γ elementary on $\mathbb{C} \backslash S$

Gamma function and open questions

Similarly, the Gamma function

$$
\Gamma(z)=\int_{0}^{\infty} t^{-1+z} \exp (-t) \mathrm{d} t
$$

is low on every set $\{z:|z|<r\} \backslash S$ where $S=\{-n \mid n \in \mathbb{N}\}$ denotes the set of poles of Γ.
Since n ! grows too fast, Γ is not low on $\mathbb{C} \backslash S$.

Question

- Is $\zeta(z)$ elementary on $\mathbb{C} \backslash\{1\}$. (not low because ∞ is an essential singularity)
- Is Γ elementary on $\mathbb{C} \backslash S$.

