Groups of finite Morley rank: current progress, current problems

Eric Jaligot

Lyon, France

Bedlewo, 12 aout 2009

Stability spectrum

Finite Morley rank, ω-stable, superstable, stable (= without the Order Property), without the Independence Property, ...

Stability spectrum

Finite Morley rank, ω -stable, superstable, stable (= without the Order Property), without the Independence Property, ...

Algebricity Conjecture (Cherlin - Zilber) : An infinite simple group of finite Morley rank is algebraic over an algebraically closed field.

Stability spectrum

Finite Morley rank, ω -stable, superstable, stable (= without the Order Property), without the Independence Property, ...

Algebricity Conjecture (Cherlin - Zilber) : An infinite simple group of finite Morley rank is algebraic over an algebraically closed field.

Classification of strongly minimal sets?

Connected rank 1 groups : abelian

Connected rank 1 groups : abelian

Connected rank 2 groups : solvable

Connected rank 1 groups : abelian

Connected rank 2 groups : solvable

Simple rank 3 groups:

- \blacksquare B < G is a Full Frobenius group, i.e.

Connected rank 1 groups : abelian

Connected rank 2 groups : solvable

Simple rank 3 groups:

- B < G is a Full Frobenius group, i.e. $B \cap B^g = 1$ for every g in
 $G \setminus B$ and $G = B^G$

Plan of the talk

- Infinite combinatorics
- Parallels with the Classification of the Finite Simple Groups
- Genericity, generosity...

Part I

INFINITE COMBINATORICS

The "bad" group problem

B < G is *malnormal* in G if $B \cap B^g = 1$ for every $g \in G \setminus B$.

The "bad" group problem

B < G is malnormal in G if $B \cap B^g = 1$ for every $g \in G \setminus B$.

Definition G is a CSA-group if every maximal abelian subgroup is malnormal.

Examples: Free groups, torsion-free (Gromov) hyperbolic groups.

The "bad" group problem

B < G is malnormal in G if $B \cap B^g = 1$ for every $g \in G \setminus B$.

Definition G is a CSA-group if every maximal abelian subgroup is malnormal.

Examples: Free groups, torsion-free (Gromov) hyperbolic groups.

Main Question: Is there a CSA-group with maximal abelian subgroups conjugate (and then $G = B^G$) and "strong" stability properties?

Existentially closed *CSA*-groups

The class of CSA-groups is inductive -> existentially closed CSA-groups.

Existentially closed *CSA*-groups

The class of CSA-groups is inductive -> existentially closed CSA-groups.

Theorem (J - Ould Houcine): Existentially closed CSA-groups without involutions are simple, and with maximal abelian subgroups divisible and conjugate

Existentially closed *CSA*-groups

The class of CSA-groups is inductive -> existentially closed CSA-groups.

Theorem (J - Ould Houcine): Existentially closed CSA-groups without involutions are simple, and with maximal abelian subgroups divisible and conjugate

What about their stability?

Definition (Independence Property) A formula $\phi(x, y)$ has the Independence Property relatively to a class C of structures if for any n >> 1 there exists $M \in C$ with tuples $x_1, \dots, x_i, \dots, x_n$, and $y_1, \dots, y_{\sigma}, \dots, y_{2^n}$ ($\sigma \in 2^n$) such that, in M, $\phi(x_i, y_{\sigma})$ is true iff $i \in \sigma$.

Definition (Independence Property) A formula $\phi(x, y)$ has the Independence Property relatively to a class C of structures if for any n >> 1 there exists $M \in C$ with tuples $x_1, \dots, x_i, \dots, x_n$, and $y_1, \dots, y_{\sigma}, \dots, y_{2^n}$ ($\sigma \in 2^n$) such that, in M, $\phi(x_i, y_{\sigma})$ is true iff $i \in \sigma$.

Theorem (J - Muranov - Neman): Let w(x, y) be a group word. Then the probability that the formula w(x, y) = 1 has the independence property relative to the class of torsion-free (Gromov) hyperbolic groups tends rapidely to 1 has the length of w tends to the infinity.

Definition (Independence Property) A formula $\phi(x, y)$ has the Independence Property relatively to a class C of structures if for any n >> 1 there exists $M \in C$ with tuples $x_1, \dots, x_i, \dots, x_n$, and $y_1, \dots, y_{\sigma}, \dots, y_{2^n}$ ($\sigma \in 2^n$) such that, in M, $\phi(x_i, y_{\sigma})$ is true iff $i \in \sigma$.

Theorem (J - Muranov - Neman): Let w(x, y) be a group word. Then the probability that the formula w(x, y) = 1 has the independence property relative to the class of torsion-free (Gromov) hyperbolic groups tends rapidely to 1 has the length of w tends to the infinity.

Corollary: Existentially closed CSA-groups without involutions have the independence property.

Definition (Independence Property) A formula $\phi(x, y)$ has the Independence Property relatively to a class C of structures if for any n >> 1 there exists $M \in C$ with tuples $x_1, \dots, x_i, \dots, x_n$, and $y_1, \dots, y_{\sigma}, \dots, y_{2^n}$ ($\sigma \in 2^n$) such that, in M, $\phi(x_i, y_{\sigma})$ is true iff $i \in \sigma$.

Theorem (J - Muranov - Neman): Let w(x, y) be a group word. Then the probability that the formula w(x, y) = 1 has the independence property relative to the class of torsion-free (Gromov) hyperbolic groups tends rapidely to 1 has the length of w tends to the infinity.

Corollary: Existentially closed CSA-groups without involutions have the independence property.

Still, are there constructions for bad groups?

Definition (Order Property) A formula $\phi(x, y)$ has the Order Property relatively to a class C of structures if for any n >> 1 there exists $M \in C$ with tuples x_1, \dots, x_n , and y_1, \dots, y_n such that , in M, $\phi(x_i, y_j)$ iff $i \leq j$.

Definition (Order Property) A formula $\phi(x, y)$ has the Order Property relatively to a class C of structures if for any n >> 1 there exists $M \in C$ with tuples x_1, \dots, x_n , and y_1, \dots, y_n such that , in M, $\phi(x_i, y_j)$ iff $i \leq j$.

Stable = Without the Order Property

Definition (Order Property) A formula $\phi(x, y)$ has the Order Property relatively to a class C of structures if for any n >> 1 there exists $M \in C$ with tuples x_1, \dots, x_n , and y_1, \dots, y_n such that , in M, $\phi(x_i, y_j)$ iff $i \leq j$.

Stable = Without the Order Property

 F_n : free group over *n* generators. (Not superstable.)

Definition (Order Property) A formula $\phi(x, y)$ has the Order Property relatively to a class C of structures if for any n >> 1 there exists $M \in C$ with tuples x_1, \dots, x_n , and y_1, \dots, y_n such that , in M, $\phi(x_i, y_j)$ iff $i \leq j$.

Stable = Without the Order Property

 F_n : free group over *n* generators. (Not superstable.)

Theorem (Sela 2006) F_n has a stable theory.

(holds more generally for torsion-free Gromov hyperbolic groups)

Conjecture A free product of stable groups is stable.

Conjecture A free product of stable groups is stable.

Neman : True for varieties restricted to bounded balls J - Sela : "Makanin-Razborov diagrams over free products"

QE?!? DuoLimit groups? Formulas for stability indices of definable sets ???

Conjecture A free product of stable groups is stable.

Neman : True for varieties restricted to bounded balls J - Sela : "Makanin-Razborov diagrams over free products"

QE?!? DuoLimit groups? Formulas for stability indices of definable sets ???

Free products with amalgams ? HNN-extensions ?

Conjecture A free product of stable groups is stable.

Neman : True for varieties restricted to bounded balls J - Sela : "Makanin-Razborov diagrams over free products"

QE?!? DuoLimit groups? Formulas for stability indices of definable sets ???

Free products with amalgams ? HNN-extensions ?

Adaptation of the machinary directly over certain monster groups (Burnside, Tarski, Olshanskii, Gromov, Delzant...) ?

Conjecture A free product of stable groups is stable.

Neman : True for varieties restricted to bounded balls J - Sela : "Makanin-Razborov diagrams over free products"

QE?!? DuoLimit groups? Formulas for stability indices of definable sets ???

Free products with amalgams ? HNN-extensions ?

Adaptation of the machinary directly over certain monster groups (Burnside, Tarski, Olshanskii, Gromov, Delzant...) ?

New ω -stable groups ???

Part II

Parallels with CFSG for simple groups of finite Morley rank

Morley rank

Morley rank

Morley rank = Zariski dimension

 $\operatorname{rk}(A) \ge n+1$ iff A contains infinitely many pairwise disjoint definable subsets A_i with $\operatorname{rk}(A_i) \ge n$.

Morley rank = Zariski dimension

 $\operatorname{rk}(A) \ge n+1$ iff A contains infinitely many pairwise disjoint definable subsets A_i with $\operatorname{rk}(A_i) \ge n$.

+

Morley rank = Zariski dimension

 $\operatorname{rk}(A) \geq n+1$ iff A contains infinitely many pairwise disjoint definable subsets A_i with $\operatorname{rk}(A_i) \geq n$.

+

Definability of the rank

Morley rank = Zariski dimension

 $\operatorname{rk}(A) \geq n+1$ iff A contains infinitely many pairwise disjoint definable subsets A_i with $\operatorname{rk}(A_i) \geq n$.

+

Definability of the rank Elimination of \exists^{∞} quantifer

Morley rank = Zariski dimension

 $\operatorname{rk}(A) \geq n+1$ iff A contains infinitely many pairwise disjoint definable subsets A_i with $\operatorname{rk}(A_i) \geq n$.

╋

Definability of the rank Elimination of \exists^{∞} quantifer

The rank is additive.

Morley rank = Zariski dimension

 $\operatorname{rk}(A) \geq n+1$ iff A contains infinitely many pairwise disjoint definable subsets A_i with $\operatorname{rk}(A_i) \geq n$.

+

Definability of the rank Elimination of \exists^{∞} quantifer

The rank is additive. For instance, $\operatorname{rk}(G/H) = \operatorname{rk}(G) - \operatorname{rk}(H)$

G group of finite Morley rank.

 ${\cal G}$ group of finite Morley rank.

Existence of a finite Morley degree (maximal number of disjoint generic subsets)

 ${\cal G}$ group of finite Morley rank.

- Existence of a finite Morley degree (maximal number of disjoint generic subsets)
- Descending Chain Condition on definable subgroups.

 ${\cal G}$ group of finite Morley rank.

- Existence of a finite Morley degree (maximal number of disjoint generic subsets)
- Descending Chain Condition on definable subgroups.
- Connected component G° : smallest definable subgroup of finite index.

Connected groups

 $G = G^{\circ}$

Connected groups

$$G = G^{\circ}$$

- Unique generic type.
- No partition in two definable generic subsets.

Connected groups

$$G = G^{\circ}$$

- Unique generic type.
- No partition in two definable generic subsets.

Elementary Fact : A connected group acting definably on a finite set fixes it pointwise.

Zilber (1975) : Infinite simple groups of finite Morley rank are \aleph_1 -categorical.

Zilber (1975) : Infinite simple groups of finite Morley rank are \aleph_1 -categorical.

Macintyre (1971): Infinite fields of finite Morley rank are algebraically closed.

Zilber (1975) : Infinite simple groups of finite Morley rank are \aleph_1 -categorical.

Macintyre (1971): Infinite fields of finite Morley rank are algebraically closed.

Algebricity Conjecture (Cherlin - Zilber) : An infinite simple group of finite Morley rank is algebraic over an algebraically closed field.

Zilber (1975) : Infinite simple groups of finite Morley rank are \aleph_1 -categorical.

Macintyre (1971): Infinite fields of finite Morley rank are algebraically closed.

Algebricity Conjecture (Cherlin - Zilber) : An infinite simple group of finite Morley rank is algebraic over an algebraically closed field.

Anti-Algebricity Conjecture : There are bad groups of finite Morley rank.

Borovik's program

Borovik's program

CFSG provides the following list:

- Cyclic of prime order
- Alternating type
- Lie type
- 26 sporadics

Borovik's program

CFSG provides the following list:

- Cyclic of prime order
- Alternating type
- Lie type
- 26 sporadics

Borovik's Program: Use the architecture of CFSG for infinite simple groups of finite Morley rank.

- 1st generation : non-inductive.
- \checkmark \approx 15000 pages, announced in 1981 (reannounced in 2004).

- 1st generation : non-inductive.
- \checkmark \approx 15000 pages, announced in 1981 (reannounced in 2004).
- 2^{nd} generation : highly inductive (Gorenstein, Lyons, Solomon).
 - Less than 20 books.

- 1^{st} generation : non-inductive.
- \checkmark \approx 15000 pages, announced in 1981 (reannounced in 2004).
- 2^{nd} generation : highly inductive (Gorenstein, Lyons, Solomon).
 - Less than 20 books.
- 3rd generation (Meierfrankenfeld, Stellmacher, Stroth).
 - Amalgam method.

- 1^{st} generation : non-inductive.
- \checkmark \approx 15000 pages, announced in 1981 (reannounced in 2004).

 2^{nd} generation : highly inductive (Gorenstein, Lyons, Solomon).

Less than 20 books.

3rd generation (Meierfrankenfeld, Stellmacher, Stroth).

Amalgam method.

4th generation ? ...

Feit-Thompson Theorem on finite groups of odd order (≈ 200 pages)

- Feit-Thompson Theorem on finite groups of odd order (≈ 200 pages)
- *i* and *j* involutions $\longrightarrow (ij)^i = (ij)^{-1}$

- Feit-Thompson Theorem on finite groups of odd order (≈ 200 pages)
- *i* and *j* involutions $\longrightarrow (ij)^i = (ij)^{-1}$
- The classification itself:
 - Char 2 type versus Char $\neq 2$ type
 - Small groups versus large groups

Sylow 2-subgroups

Theorem (Borovik - Poizat , 1990) : Sylow 2-subgroups are conjugate and if S is one of them, then S° is nilpotent and a central product with finite intersection

 $S^{\circ} = T * U$

of a 2-torus T and a 2-unipotent subgroup U.

Sylow 2-subgroups

Theorem (Borovik - Poizat , 1990) : Sylow 2-subgroups are conjugate and if S is one of them, then S° is nilpotent and a central product with finite intersection

 $S^{\circ} = T * U$

of a 2-torus T and a 2-unipotent subgroup U.

- \checkmark 2-torus : divisible abelian 2-group.
- 2-unipotent : definable connected 2-group of bounded exponent.

Types :

	$U \neq 1$	U = 1
$T \neq 1$	Mixed	Odd
T = 1	Even	Degenerate

Types :

$$U \neq 1$$
 $U = 1$ $T \neq 1$ MixedOdd $T = 1$ EvenDegenerate

Conjectures for G simple :

Types :

$$U \neq 1$$
 $U = 1$ $T \neq 1$ MixedOdd $T = 1$ EvenDegenerate

Conjectures for G simple :

Solution Even type $\longrightarrow G$ algebraic in characteristic 2.

Types :

$$U \neq 1$$
 $U = 1$ $T \neq 1$ MixedOdd $T = 1$ EvenDegenerate

Conjectures for G simple :

- **•** Even type $\longrightarrow G$ algebraic in characteristic 2.
- Odd type $\longrightarrow G$ algebraic in characteristic $\neq 2$.

Types :

$$U \neq 1$$
 $U = 1$ $T \neq 1$ MixedOdd $T = 1$ EvenDegenerate

Conjectures for G simple :

- **•** Even type $\longrightarrow G$ algebraic in characteristic 2.
- **•** Odd type $\longrightarrow G$ algebraic in characteristic $\neq 2$.
- No mixed type.

Types and characteristic

Types :

$$U \neq 1$$
 $U = 1$ $T \neq 1$ MixedOdd $T = 1$ EvenDegenerate

Conjectures for G simple :

- Even type $\longrightarrow G$ algebraic in characteristic 2.
- Odd type $\longrightarrow G$ algebraic in characteristic $\neq 2$.
- No mixed type.
- Degenerate type ? (bad group for example)

Even type

Theorem (Altinel - Borovik - Cherlin + ...): A simple group of finite Morley rank of even type is algebraic over an algebraically closed field of characteristic 2.

Even type

Theorem (Altinel - Borovik - Cherlin + ...): A simple group of finite Morley rank of even type is algebraic over an algebraically closed field of characteristic 2.

Proof :

Even type

Theorem (Altinel - Borovik - Cherlin + ...): A simple group of finite Morley rank of even type is algebraic over an algebraically closed field of characteristic 2.

Proof: Book

• Thin case: {minimal parabolic subgroups} = \emptyset .

• Thin case: $\{\text{minimal parabolic subgroups}\} = \emptyset$.

$PSL_2(K)$

Strong embedding, weak embedding, abelian Sylow^{\circ} 2-subgroups, Baumann's pushing up theorem, C(G,T) theorem, 2-components

• Thin case: $\{\text{minimal parabolic subgroups}\} = \emptyset$.

$PSL_2(K)$

Strong embedding, weak embedding, abelian Sylow^{\circ} 2-subgroups, Baumann's pushing up theorem, C(G,T) theorem, 2-components

Quasithin case: generation by two minimal parabolic subgroups.

• Thin case: $\{minimal \ parabolic \ subgroups\} = \emptyset$.

 $PSL_2(K)$

Strong embedding, weak embedding, abelian Sylow^{\circ} 2-subgroups, Baumann's pushing up theorem, C(G,T) theorem, 2-components

Quasithin case: generation by two minimal parabolic subgroups.

 $PSL_3(K), G_2(K), PS_{p_4}(K)$

Amalgam method

• Thin case: $\{minimal \ parabolic \ subgroups\} = \emptyset$.

 $PSL_2(K)$

Strong embedding, weak embedding, abelian Sylow^{\circ} 2-subgroups, Baumann's pushing up theorem, C(G,T) theorem, 2-components

Quasithin case: generation by two minimal parabolic subgroups.

 $PSL_3(K), G_2(K), PS_{p_4}(K)$

Amalgam method

Generic case: Other.

• Thin case: {minimal parabolic subgroups} = \emptyset .

 $PSL_2(K)$

Strong embedding, weak embedding, abelian Sylow^{\circ} 2-subgroups, Baumann's pushing up theorem, C(G, T) theorem, 2-components

Quasithin case: generation by two minimal parabolic subgroups.

 $PSL_3(K), G_2(K), PS_{p_4}(K)$

Amalgam method

Generic case: other.

others

Reductivity and semisimplicity of elements of odd prime order, find root SL_2 subgroups, build an "optimistic" torus and Weyl group W, complex reflection group by ultraproduct, crystallographic Coxeter group by Shepard-Todd, ______ recognition via Curtis-Tits-Phan

Mixed type

Theorem : A simple group of finite Morley rank cannot be of mixed type.

Proof

- Proceeds as if G was a direct product of a group of even type and of a group of odd type.
- Uses the classification in even type.

Odd type

 $S^{\circ} = \mathbb{Z}_{2^{\infty}} \times \cdots \times \mathbb{Z}_{2^{\infty}}$

Odd type

 $S^{\circ} = \mathbb{Z}_{2^{\infty}} \times \cdots \times \mathbb{Z}_{2^{\infty}}$

Number of copies of $\mathbb{Z}_{2^{\infty}}$: *Prüfer* 2*-rank*.

Odd type

 $S^{\circ} = \mathbb{Z}_{2^{\infty}} \times \cdots \times \mathbb{Z}_{2^{\infty}}$

Number of copies of $\mathbb{Z}_{2^{\infty}}$: *Prüfer* 2*-rank.*

Theorem : A minimal counterexample to the Algebricity Conjecture of odd type has Prüfer 2-rank at most 2.

Bad fields

Bad fields

Baudisch - Hils - Martin-Pizzaro - Wagner (2006) There exists a field $\langle K, T \rangle$ of finite Morley rank, with $T < K^{\times}$, in characteristic 0.

Bad fields

Baudisch - Hils - Martin-Pizzaro - Wagner (2006) There exists a field $\langle K, T \rangle$ of finite Morley rank, with $T < K^{\times}$, in characteristic 0.

Enourmous complications! (Unipotence theory has to be developed from scratch –> Burdges Thesis)

PSL₂ Minimal connected simple group :

 PSL_2

Minimal connected simple group : simple and all proper definable connected subgroups are solvable.

 PSL_2

Minimal connected simple group : simple and all proper definable connected subgroups are solvable.

locally° solvable :

PSL_2

Minimal connected simple group : simple and all proper definable connected subgroups are solvable.

locally[°] solvable : normalizers[°] of nontrivial solvable subgroups remain solvable.

 $SL_2(K)$

PSL_2

Minimal connected simple group : simple and all proper definable connected subgroups are solvable.

locally[°] solvable : normalizers[°] of nontrivial solvable subgroups remain solvable.

 $SL_2(K)$ locally^o solvable^o : normalizers^o of infinite solvable subgroups remain solvable.

PSL_2

Minimal connected simple group : simple and all proper definable connected subgroups are solvable.

locally^o solvable : normalizers^o of nontrivial solvable subgroups remain solvable.

 $SL_2(K)$ locally° solvable° : normalizers° of infinite solvable subgroups remain solvable.

Call the finite center of $SL_2(K)$ an exceptional finite set.

http://math.univ-lyon1.fr/~jaligot/

http://math.univ-lyon1.fr/~jaligot/

Local Analysis:

http://math.univ-lyon1.fr/~jaligot/

Local Analysis:

Uniqueness Theorem (J 2000 – 2007)

http://math.univ-lyon1.fr/~jaligot/

Local Analysis: *Uniqueness Theorem* (J 2000 – 2007) *Rutgers' Style*

http://math.univ-lyon1.fr/~jaligot/

Local Analysis: *Uniqueness Theorem* (J 2000 – 2007) *Rutgers' Style*

Theorem (Deloro - J) A connected locally^{\circ} solvable^{\circ} group with involutions is either solvable, $PSL_2(K)$ with Char(K) = 2, or non-solvable of odd type.

http://math.univ-lyon1.fr/~jaligot/

Local Analysis: *Uniqueness Theorem* (J 2000 – 2007) *Rutgers' Style*

Theorem (Deloro - J) A connected locally^{\circ} solvable^{\circ} group with involutions is either solvable, $PSL_2(K)$ with Char(K) = 2, or non-solvable of odd type.

Non-solvable odd type case J 2000 - Cherlin-J 2004 - Deloro's Thesis 2007. -> THREE PROBLEMATIC CONFIGURATIONS.

Part III

Generix' Adventures in Groupland

Carter subgroups

Carter subgroups

Definition : A Carter subgroup is a definable connected nilpotent subgroup of finite index in its normalizer.

Carter subgroups

Definition : A Carter subgroup is a definable connected nilpotent subgroup of finite index in its normalizer.

Theorem (Frécon - J 2004) : It always exists!

Definition:

- $X \subseteq_{def} G$ is generic in G if $\operatorname{rk}(X) = \operatorname{rk}(G)$.
- $X \subseteq_{def} G$ is generous in G if X^G is generic in G.

Definition :

- $X \subseteq_{def} G$ is generic in G if $\operatorname{rk}(X) = \operatorname{rk}(G)$.
- $X \subseteq_{def} G$ is generous in G if X^G is generic in G.

Modern geometric rank computation: X is generous iff a generic element of G belongs to finitely many conjugates of X (X normalizing coset of a definable subgroup).

Definition :

- $X \subseteq_{def} G$ is generic in G if $\operatorname{rk}(X) = \operatorname{rk}(G)$.
- $X \subseteq_{def} G$ is generous in G if X^G is generic in G.

Modern geometric rank computation: X is generous iff a generic element of G belongs to finitely many conjugates of X (X normalizing coset of a definable subgroup).

Generix never gives up - 2005 : In any group of finite Morley rank, generous Carter subgroups are conjugate and generically disjoint.

Definition :

- $X \subseteq_{def} G$ is generic in G if $\operatorname{rk}(X) = \operatorname{rk}(G)$.
- $X \subseteq_{def} G$ is generous in G if X^G is generic in G.

Modern geometric rank computation: X is generous iff a generic element of G belongs to finitely many conjugates of X (X normalizing coset of a definable subgroup).

Generix never gives up - 2005 : In any group of finite Morley rank, generous Carter subgroups are conjugate and generically disjoint.

Generix and the Cosets - 2009: The Weyl group N(Q)/Q, where Q is a generous Carter subgroup, acts faithfully on Q (almost always).

Genericity Conjecture

Main question/conjecture : Any group of finite Morley rank contains a generous Carter subgroup.

Genericity Conjecture

Main question/conjecture : Any group of finite Morley rank contains a generous Carter subgroup.

Includes algebraic groups and bad groups. More raisonable then Cherlin's conjecture, but still very HARD!

Genericity Conjecture

Main question/conjecture : Any group of finite Morley rank contains a generous Carter subgroup.

Includes algebraic groups and bad groups. More raisonable then Cherlin's conjecture, but still very HARD!

Even more food for the next decades:

Can a group have a generous Carter subgroup and a non-generous Borel subgroup?

Is there a kind of bad group with a nontrivial Weyl group?