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Algebricity Conjecture

Stability spectrum
Finite Morley rank,
ω-stable,
superstable,
stable (= without the Order Property),
without the Independence Property, ...
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Algebricity Conjecture

Stability spectrum
Finite Morley rank,
ω-stable,
superstable,
stable (= without the Order Property),
without the Independence Property, ...

Algebricity Conjecture (Cherlin - Zilber) : An infinite simple group of finite
Morley rank is algebraic over an algebraically closed field.

Classification of strongly minimal sets ?
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Cherlin’s 79 dichotomy

Connected rank 1 groups : abelian

Connected rank 2 groups : solvable

Simple rank 3 groups:

PSL2(K)

B < G is a Full Frobenius group, i.e.
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Cherlin’s 79 dichotomy

Connected rank 1 groups : abelian

Connected rank 2 groups : solvable

Simple rank 3 groups:

PSL2(K)

B < G is a Full Frobenius group, i.e. B ∩ Bg = 1 for every g in
G \ B and G = BG
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Plan of the talk

Infinite combinatorics

Parallels with the Classification of the Finite Simple Groups

Genericity, generosity...
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Part I

INFINITE COMBINATORICS
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The “bad" group problem

B < G is malnormal in G if B ∩ Bg = 1 for every g ∈ G \ B.
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The “bad" group problem

B < G is malnormal in G if B ∩ Bg = 1 for every g ∈ G \ B.

Definition G is a CSA-group if every maximal abelian subgroup is malnormal.

Examples: Free groups, torsion-free (Gromov) hyperbolic groups.
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The “bad" group problem

B < G is malnormal in G if B ∩ Bg = 1 for every g ∈ G \ B.

Definition G is a CSA-group if every maximal abelian subgroup is malnormal.

Examples: Free groups, torsion-free (Gromov) hyperbolic groups.

Main Question: Is there a CSA-group with maximal abelian
subgroups conjugate (and then G = BG) and "strong" stability
properties?
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Existentially closedCSA-groups

The class of CSA-groups is inductive –> existentially closed
CSA-groups.
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Existentially closedCSA-groups

The class of CSA-groups is inductive –> existentially closed
CSA-groups.

Theorem (J - Ould Houcine): Existentially closed CSA-groups without
involutions are simple, and with maximal abelian subgroups divisible and
conjugate

Groups of finite Morley rank: current progress, current problems – p. 7/31



Existentially closedCSA-groups

The class of CSA-groups is inductive –> existentially closed
CSA-groups.

Theorem (J - Ould Houcine): Existentially closed CSA-groups without
involutions are simple, and with maximal abelian subgroups divisible and
conjugate

What about their stability?
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Independence Property

Definition (Independence Property) A formula φ(x, y) has the Independence
Property relatively to a class C of structures if for any n >> 1 there exists
M ∈ C with tuples x1, · · · , xi, · · · , xn, and y1, · · · , yσ, · · · , y2n (σ ∈ 2n)
such that, in M , φ(xi, yσ) is true iff i ∈ σ.
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Independence Property

Definition (Independence Property) A formula φ(x, y) has the Independence
Property relatively to a class C of structures if for any n >> 1 there exists
M ∈ C with tuples x1, · · · , xi, · · · , xn, and y1, · · · , yσ, · · · , y2n (σ ∈ 2n)
such that, in M , φ(xi, yσ) is true iff i ∈ σ.

Theorem (J - Muranov - Neman): Let w(x, y) be a group word. Then the

probability that the formula w(x, y) = 1 has the independence property relative
to the class of torsion-free (Gromov) hyperbolic groups tends rapidely to 1 has the
length of w tends to the infinity.
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Definition (Independence Property) A formula φ(x, y) has the Independence
Property relatively to a class C of structures if for any n >> 1 there exists
M ∈ C with tuples x1, · · · , xi, · · · , xn, and y1, · · · , yσ, · · · , y2n (σ ∈ 2n)
such that, in M , φ(xi, yσ) is true iff i ∈ σ.

Theorem (J - Muranov - Neman): Let w(x, y) be a group word. Then the

probability that the formula w(x, y) = 1 has the independence property relative
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length of w tends to the infinity.

Corollary: Existentially closed CSA-groups without involutions have the
independence property.
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Independence Property

Definition (Independence Property) A formula φ(x, y) has the Independence
Property relatively to a class C of structures if for any n >> 1 there exists
M ∈ C with tuples x1, · · · , xi, · · · , xn, and y1, · · · , yσ, · · · , y2n (σ ∈ 2n)
such that, in M , φ(xi, yσ) is true iff i ∈ σ.

Theorem (J - Muranov - Neman): Let w(x, y) be a group word. Then the

probability that the formula w(x, y) = 1 has the independence property relative
to the class of torsion-free (Gromov) hyperbolic groups tends rapidely to 1 has the
length of w tends to the infinity.

Corollary: Existentially closed CSA-groups without involutions have the
independence property.

Still, are there constructions for bad groups?
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Stability
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Stability

Definition (Order Property) A formula φ(x, y) has the Order Property relatively
to a class C of structures if for any n >> 1 there exists M ∈ C with tuples
x1, · · · , xn, and y1, · · · , yn such that , in M , φ(xi, yj) iff i ≤ j.
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Fn: free group over n generators. (Not superstable.)

Groups of finite Morley rank: current progress, current problems – p. 9/31



Stability

Definition (Order Property) A formula φ(x, y) has the Order Property relatively
to a class C of structures if for any n >> 1 there exists M ∈ C with tuples
x1, · · · , xn, and y1, · · · , yn such that , in M , φ(xi, yj) iff i ≤ j.

Stable = Without the Order Property

Fn: free group over n generators. (Not superstable.)

Theorem (Sela 2006) Fn has a stable theory.

(holds more generally for torsion-free Gromov hyperbolic groups)
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Generalizations problems
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Generalizations problems

Conjecture A free product of stable groups is stable.
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Generalizations problems

Conjecture A free product of stable groups is stable.

Neman : True for varieties restricted to bounded balls
J - Sela : “Makanin-Razborov diagrams over free products"

QE?!? DuoLimit groups? Formulas for stability indices of definable sets ???
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QE?!? DuoLimit groups? Formulas for stability indices of definable sets ???

Free products with amalgams ? HNN-extensions ?

Adaptation of the machinary directly over certain monster groups
(Burnside, Tarski, Olshanskii, Gromov, Delzant...) ?
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Generalizations problems

Conjecture A free product of stable groups is stable.

Neman : True for varieties restricted to bounded balls
J - Sela : “Makanin-Razborov diagrams over free products"

QE?!? DuoLimit groups? Formulas for stability indices of definable sets ???

Free products with amalgams ? HNN-extensions ?

Adaptation of the machinary directly over certain monster groups
(Burnside, Tarski, Olshanskii, Gromov, Delzant...) ?

New ω-stable groups ???
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Part II

Parallels with CFSG

for simple groups of finite Morley rank
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Morley rank
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Morley rank

Morley rank = Zariski dimension

rk (A) ≥ n + 1 iff A contains infinitely many pairwise disjoint
definable subsets Ai with rk (Ai) ≥ n.
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+
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Morley rank

Morley rank = Zariski dimension

rk (A) ≥ n + 1 iff A contains infinitely many pairwise disjoint
definable subsets Ai with rk (Ai) ≥ n.

+

Definability of the rank

Elimination of ∃∞ quantifer

The rank is additive. For instance, rk (G/H) = rk (G) − rk (H)
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Basic properties

G group of finite Morley rank.
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Basic properties

G group of finite Morley rank.

Existence of a finite Morley degree (maximal number of disjoint
generic subsets)
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G group of finite Morley rank.

Existence of a finite Morley degree (maximal number of disjoint
generic subsets)

Descending Chain Condition on definable subgroups.
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Basic properties

G group of finite Morley rank.

Existence of a finite Morley degree (maximal number of disjoint
generic subsets)

Descending Chain Condition on definable subgroups.

Connected component G◦: smallest definable subgroup of
finite index.
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Connected groups

G = G◦
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Connected groups

G = G◦

Unique generic type.

No partition in two definable generic subsets.
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Connected groups

G = G◦

Unique generic type.

No partition in two definable generic subsets.

Elementary Fact : A connected group acting definably on a finite set fixes it
pointwise.
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Simple groups

Groups of finite Morley rank: current progress, current problems – p. 15/31



Simple groups

Zilber (1975) : Infinite simple groups of finite Morley rank are ℵ1-categorical.
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Simple groups
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Macintyre (1971) : Infinite fields of finite Morley rank are algebraically closed.
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Simple groups

Zilber (1975) : Infinite simple groups of finite Morley rank are ℵ1-categorical.

Macintyre (1971) : Infinite fields of finite Morley rank are algebraically closed.

Algebricity Conjecture (Cherlin - Zilber) : An infinite simple group of finite
Morley rank is algebraic over an algebraically closed field.
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Simple groups

Zilber (1975) : Infinite simple groups of finite Morley rank are ℵ1-categorical.

Macintyre (1971) : Infinite fields of finite Morley rank are algebraically closed.

Algebricity Conjecture (Cherlin - Zilber) : An infinite simple group of finite
Morley rank is algebraic over an algebraically closed field.

Anti-Algebricity Conjecture : There are bad groups of finite Morley rank.
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Borovik’s program
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Borovik’s program

CFSG provides the following list:
- Cyclic of prime order
- Alternating type
- Lie type
- 26 sporadics
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Borovik’s program

CFSG provides the following list:
- Cyclic of prime order
- Alternating type
- Lie type
- 26 sporadics

Borovik’s Program: Use the architecture of CFSG for infinite simple
groups of finite Morley rank.
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Generations of proof for CFSG
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Generations of proof for CFSG

1st generation : non-inductive.

≈ 15000 pages, announced in 1981 (reannounced in 2004).
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Generations of proof for CFSG

1st generation : non-inductive.

≈ 15000 pages, announced in 1981 (reannounced in 2004).

2nd generation : highly inductive (Gorenstein, Lyons, Solomon).

Less than 20 books.
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1st generation : non-inductive.

≈ 15000 pages, announced in 1981 (reannounced in 2004).

2nd generation : highly inductive (Gorenstein, Lyons, Solomon).

Less than 20 books.

3rd generation (Meierfrankenfeld, Stellmacher, Stroth).

Amalgam method.
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Generations of proof for CFSG

1st generation : non-inductive.

≈ 15000 pages, announced in 1981 (reannounced in 2004).

2nd generation : highly inductive (Gorenstein, Lyons, Solomon).

Less than 20 books.

3rd generation (Meierfrankenfeld, Stellmacher, Stroth).

Amalgam method.

4th generation ? ...
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Main steps for CFSG
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Main steps for CFSG

Feit-Thompson Theorem on finite groups of odd order (≈ 200
pages)
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Main steps for CFSG

Feit-Thompson Theorem on finite groups of odd order (≈ 200
pages)

i and j involutions −→ (ij)i = (ij)−1
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Main steps for CFSG

Feit-Thompson Theorem on finite groups of odd order (≈ 200
pages)

i and j involutions −→ (ij)i = (ij)−1

The classification itself:
- Char 2 type versus Char 6= 2 type
- Small groups versus large groups
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Sylow 2-subgroups

Theorem (Borovik - Poizat , 1990) : Sylow 2-subgroups are conjugate and if S
is one of them, then S◦ is nilpotent and a central product with finite intersection

S◦ = T ∗ U

of a 2-torus T and a 2-unipotent subgroup U .
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Sylow 2-subgroups

Theorem (Borovik - Poizat , 1990) : Sylow 2-subgroups are conjugate and if S
is one of them, then S◦ is nilpotent and a central product with finite intersection

S◦ = T ∗ U

of a 2-torus T and a 2-unipotent subgroup U .

2-torus : divisible abelian 2-group.

2-unipotent : definable connected 2-group of bounded
exponent.
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Types and characteristic

Types :

U 6= 1 U = 1

T 6= 1 Mixed Odd
T = 1 Even Degenerate
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Types and characteristic

Types :

U 6= 1 U = 1

T 6= 1 Mixed Odd
T = 1 Even Degenerate

Conjectures for G simple :

Even type −→ G algebraic in characteristic 2.

Odd type −→ G algebraic in characteristic 6= 2.

No mixed type.
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Types and characteristic

Types :

U 6= 1 U = 1

T 6= 1 Mixed Odd
T = 1 Even Degenerate

Conjectures for G simple :

Even type −→ G algebraic in characteristic 2.

Odd type −→ G algebraic in characteristic 6= 2.

No mixed type.

Degenerate type ? (bad group for example)
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Even type

Theorem (Altinel - Borovik - Cherlin + ...) : A simple group of finite Morley rank
of even type is algebraic over an algebraically closed field of characteristic 2.
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Even type

Theorem (Altinel - Borovik - Cherlin + ...) : A simple group of finite Morley rank
of even type is algebraic over an algebraically closed field of characteristic 2.

Proof :
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Even type

Theorem (Altinel - Borovik - Cherlin + ...) : A simple group of finite Morley rank
of even type is algebraic over an algebraically closed field of characteristic 2.

Proof : Book �
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Even type: general plan
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Even type: general plan

Thin case: {minimal parabolic subgroups} = ∅.
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Even type: general plan

Thin case: {minimal parabolic subgroups} = ∅.

PSL2(K)

Strong embedding, weak embedding, abelian Sylow◦ 2-subgroups,
Baumann’s pushing up theorem, C(G,T ) theorem, 2-components
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PSL3(K), G2(K), PSp4
(K)

Amalgam method
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PSL3(K), G2(K), PSp4
(K)

Amalgam method

Generic case: other.
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Even type: general plan

Thin case: {minimal parabolic subgroups} = ∅.

PSL2(K)

Strong embedding, weak embedding, abelian Sylow◦ 2-subgroups,
Baumann’s pushing up theorem, C(G,T ) theorem, 2-components

Quasithin case: generation by two minimal parabolic subgroups.

PSL3(K), G2(K), PSp4
(K)

Amalgam method

Generic case: other.
others

Reductivity and semisimplicity of elements of odd prime order, find root SL2

subgroups, build an ”optimistic” torus and Weyl group W , complex reflection
group by ultraproduct, crystallographic Coxeter group by Shepard-Todd,
recognition via Curtis-Tits-Phan
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Mixed type

Theorem : A simple group of finite Morley rank cannot be of mixed type.

Proof

Proceeds as if G was a direct product of a group of even type
and of a group of odd type.

Uses the classification in even type.

�
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Odd type

S◦ = Z2∞ × · · · × Z2∞
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Odd type

S◦ = Z2∞ × · · · × Z2∞

Number of copies of Z2∞ : Prüfer 2-rank.
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Odd type

S◦ = Z2∞ × · · · × Z2∞

Number of copies of Z2∞ : Prüfer 2-rank.

Theorem : A minimal counterexample to the Algebricity Conjecture of odd type
has Prüfer 2-rank at most 2.
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Bad fields
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Bad fields

Baudisch - Hils - Martin-Pizzaro - Wagner (2006) There exists a field
〈K,T 〉 of finite Morley rank, with T < K×, in characteristic 0.
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Bad fields

Baudisch - Hils - Martin-Pizzaro - Wagner (2006) There exists a field
〈K,T 〉 of finite Morley rank, with T < K×, in characteristic 0.

Enourmous complications! (Unipotence theory has to be developed
from scratch –> Burdges Thesis)
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Minimal configurations
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Minimal configurations

PSL2

Minimal connected simple group :
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Minimal configurations

PSL2

Minimal connected simple group : simple and all proper definable
connected subgroups are solvable.
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Minimal configurations

PSL2

Minimal connected simple group : simple and all proper definable
connected subgroups are solvable.

locally◦ solvable : normalizers◦ of nontrivial solvable subgroups remain
solvable.

SL2(K)
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Minimal configurations

PSL2

Minimal connected simple group : simple and all proper definable
connected subgroups are solvable.

locally◦ solvable : normalizers◦ of nontrivial solvable subgroups remain
solvable.

SL2(K)

locally◦ solvable◦ : normalizers◦ of infinite solvable subgroups remain
solvable.

Call the finite center of SL2(K) an exceptional finite set .
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“Classification" of locally ◦ solvable◦ groups
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“Classification" of locally ◦ solvable◦ groups
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Uniqueness Theorem (J 2000 – 2007)
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Local Analysis:

Uniqueness Theorem (J 2000 – 2007)

Rutgers’ Style
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“Classification" of locally ◦ solvable◦ groups

http://math.univ-lyon1.fr/∼jaligot/

Local Analysis:

Uniqueness Theorem (J 2000 – 2007)

Rutgers’ Style

Theorem (Deloro - J) A connected locally◦ solvable◦ group with
involutions is either solvable, PSL2(K) with Char(K) = 2, or
non-solvable of odd type.
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“Classification" of locally ◦ solvable◦ groups

http://math.univ-lyon1.fr/∼jaligot/

Local Analysis:

Uniqueness Theorem (J 2000 – 2007)

Rutgers’ Style

Theorem (Deloro - J) A connected locally◦ solvable◦ group with
involutions is either solvable, PSL2(K) with Char(K) = 2, or
non-solvable of odd type.

Non-solvable odd type case J 2000 - Cherlin-J 2004 - Deloro’s Thesis
2007. –> THREE PROBLEMATIC CONFIGURATIONS.
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Part III

Generix’ Adventures in Groupland
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Carter subgroups
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Carter subgroups

Definition : A Carter subgroup is a definable connected nilpotent subgroup of
finite index in its normalizer.
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Carter subgroups

Definition : A Carter subgroup is a definable connected nilpotent subgroup of
finite index in its normalizer.

Theorem (Fr écon - J 2004) : It always exists!
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Generous Carter subgroups

Definition :
X ⊆def G is generic in G if rk (X) = rk (G).

X ⊆def G is generous in G if XG is generic in G.
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Generous Carter subgroups

Definition :
X ⊆def G is generic in G if rk (X) = rk (G).

X ⊆def G is generous in G if XG is generic in G.

Modern geometric rank computation: X is generous iff a generic element of
G belongs to finitely many conjugates of X (X normalizing coset of a definable
subgroup).
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Definition :
X ⊆def G is generic in G if rk (X) = rk (G).

X ⊆def G is generous in G if XG is generic in G.

Modern geometric rank computation: X is generous iff a generic element of
G belongs to finitely many conjugates of X (X normalizing coset of a definable
subgroup).

Generix never gives up - 2005 : In any group of finite Morley rank, generous
Carter subgroups are conjugate and generically disjoint.
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Generous Carter subgroups

Definition :
X ⊆def G is generic in G if rk (X) = rk (G).

X ⊆def G is generous in G if XG is generic in G.

Modern geometric rank computation: X is generous iff a generic element of
G belongs to finitely many conjugates of X (X normalizing coset of a definable
subgroup).

Generix never gives up - 2005 : In any group of finite Morley rank, generous
Carter subgroups are conjugate and generically disjoint.

Generix and the Cosets - 2009 : The Weyl group N(Q)/Q, where Q is a
generous Carter subgroup, acts faithfully on Q (almost always).
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Genericity Conjecture

Main question/conjecture : Any group of finite Morley rank contains a generous
Carter subgroup.
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Genericity Conjecture

Main question/conjecture : Any group of finite Morley rank contains a generous
Carter subgroup.

Includes algebraic groups and bad groups.
More raisonable then Cherlin’s conjecture, but still very HARD!
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Genericity Conjecture

Main question/conjecture : Any group of finite Morley rank contains a generous
Carter subgroup.

Includes algebraic groups and bad groups.
More raisonable then Cherlin’s conjecture, but still very HARD!

Even more food for the next decades:

Can a group have a generous Carter subgroup and a non-generous Borel
subgroup?

Is there a kind of bad group with a nontrivial Weyl group ?
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