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September 2004, in Oxford

Boris Zilber and JAM

BZ: What are you studying nowadays?

JAM: Graph polynomials.

BZ: Uh? What? Examples ....

JAM: Matching polynomial, chromatic polynomial,
characteristic polynomial, . . . (detailed definitions) . . .

BZ: I know these! They all occur as growth polynomials
in ℵ0-categorical, ω-stable models!

JAM: ??? Let’s see!
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Overview

• The chromatic polynomial: G. Birkhoff 1912

• Parametrized Numeric graph invariants

• Coloring properties: A model theoretic view

• Graph polynomials

• Definability of numeric graph invariants

• ℵ0-categorical ω-stable first order structures and

the growth of their finite approximations

• If time permits: Complexity (and algebraic geometry)
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The Chromatic Polynomial

and

Its Variations
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The (vertex) chromatic polynomial

Let G = (V (G), E(G)) be a graph, and λ ∈ N.

A λ-vertex-coloring is a map

c : V (G) → [λ]

such that (u, v) ∈ E(G) implies that c(u) 6= c(v).

We define χ(G, λ) to be the number of λ-vertex-colorings

Theorem: (G. Birkhoff, 1912)

χ(G, λ) is a polynomial in Z[λ].

Proof:

(i) χ(En) = λn where En consists of n isolated vertices.

(ii) For any edge e = E(G) we have χ(G − e, λ) = χ(G, λ) + χ(G/e, λ).
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Interpretation of χ(G, λ) for λ 6∈ N

What’s the point in considering λ 6∈ N?

Stanley, 1973 For simple graphs G, | χ(G,−1) | counts the

number of acyclic orientations of G.

Stanley, 1973 There are also combinatorial interpretations of χ(G,−m)

for each m ∈ N, which are more complicated to state.

Open: What about χ(G, λ) for each m ∈ R − Z?
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The Four Color Conjecture

Birkhoff wanted to prove the Four Color Conjecture using techniques from
real or complex analysis.

Conjecture:(Birkhoff and Lewis) If G is planar
then χ(G, λ) 6= 0 for λ ∈ [4,+∞) ⊆ R.

This was not very successful. However, for real roots of χ we know:

Jackson, 1993 For simple graphs G we have χ(G, λ) 6= 0 for
λ ∈ (−∞,0), λ ∈ (0,1) and λ ∈ (1, 32

27
).

Birkhoff and Lewis, 1946 For planar graphs G we have χ(G, λ) 6= 0 for
λ ∈ [5,+∞).

Still open: Are there planar graphs G such that χ(G, λ) = 0
for some λ ∈ (4,5)?

Thomassen, 1997 and Sokal, 2004 The real roots of all chromatic poly-
nomials are dense in (1, 32

27
); the complex roots are dense in C.
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Bȩdlewo, August 2009 Chromatic polynomial

The edge-chromatic polynomial

Let G = (V (G), E(G)) be a graph, and λ ∈ N.

A λ-edge-coloring is a map

c : E(G) → [λ]

such that if (e, f) ∈ E(G) have a common vertex then c(e) 6= c(f).

We define χe(G, λ) to be the number of λ- edge-colorings

Fact: χe(G, λ) a polynomial in Z[λ].

Let L(G) be the line graph of G.
V (L(G)) = E(G) and (e, f) ∈ E(L(G)) iff e and f have a common vertex.

Observation: χe(G, λ) = χ(L(G), λ), where L(G) is the line graph of G.

Conclusion: χe(G, λ) is a polynomial in Z[λ].
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Variations on coloring, I

We can count other coloring functions.

• Total colorings

fV : V → [λV ], fE : E → [λE] and f = fV ∪ fE,

with fV a proper vertex coloring and fE a proper edge coloring.

• Connected components

fV : V → [λV ], If (u, v) ∈ E then fV (u) = fV (v).

• Pre-coloring extensions

Given graph G = (V, E) and an equivalence relation R on V and fV : V → [λV ], we

require that if (u, v) ∈ R they have the same color, and if (u, v) ∈ E − R they have

different colors.

Fact: The corresponding counting functions are polynomials in λ.
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Variations on coloring, II

Hypergraph colorings

Given a hypergraph G = (V, E) with E ⊂ ℘(V ).

• If we require that if u ∈ e for some e ∈ E which is not a singleton, then there is
v ∈ E, u 6= v with f(u) 6= f(v), we have a weak hypergraph coloring.

• If we require that for every e ∈ E, for every u, v ∈ E, u 6= v we have f(u) 6= f(v), we
have a strong hypergraph coloring.

Given a hypergraph G = (V, E, D) with two types of hyper-edges D, E ⊂ ℘(V ).

• If we require that

– if u ∈ e for some e ∈ E, which is not a singleton, then there is v ∈ E, u 6= v with
f(u) 6= f(v);

– if u, v ∈ d for some d ∈ D, then f(u) = f(v);

we have a mixed hypergraph coloring.

Fact: The corresponding counting functions are polynomials in λ.

Vitaly I. Voloshin, Coloring Mixed Hypergraphs: Theory, Algorithms and Applications,

Fields Institute Monographs, AMS 2002
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Variations on coloring, III

Encountered at CanaDam-07:

Let f : V (G) → [λ] be a function, such that Φ is one of the properties below
and χΦ(G, λ) denotes the number of such colorings with atmost λ colors.

* convex: Every monochromatic set induces a connected graph.

* injective: f is injectiv on the neighborhood of every vertex.

- complete: f is a proper coloring such that every pair of colors occurs along
some edge.

* harmonious: f is a proper coloring such that every pair of colors occurs
at most once along some edge.

- equitable: All color classes have (almost) the same size.

* equitable, modified: All non-empty color classes have the same size.

New fact: For (*), χΦ(G, λ) is a polynomial in λ, for (-), it is not.
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Variations on coloring, IV

* path-rainbow: Let f : E → [λ] be an edge-coloring. f is path-rainbow if
between any two vertices u, v ∈ V there as a path where all the edges
have different colors.

New fact: χrainbow(G, λ), the number of path-rainbow colorings of G with λ
colors, is a polynomial in λ

Rainbow colorings of various kinds arise in computational biology

* -monochromatic components: Let f : V → [λ] be an vertex-coloring and
t ∈ N. f is an mcct-coloring of G with λ colors, if all the connected
components of a monochromatic set have size at most t.

New fact: For fixed t ≥ 1 the function χmcct(G, λ), the number of mcct-

colorings of G with λ colors, is a polynomial in λ. but not in t.

mcct colorings were first studied in:

N. Alon, G. Ding, B. Oporowski, and D. Vertigan. Partitioning into graphs with only small

components. Journal of Combinatorial Theory, Series B, 87:231–243, 2003.
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Parametrized Numeric Graph Invariants
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Bounded numeric invariants

In graph theory it is often customary to look at numeric invariants which
bounded by a function b : G → N.

• k(G): the number of connected components of G;
k(G, λ): the number of connected components of G of size λ.

• cl(G): the number of cliques of G;
cl(G, λ): the number of cliques of G of size λ.

• indep(G, λ): the number of independent sets of G of size λ.

• v(G, λ): the number of vertex covers of G of size λ.

• m(G, λ): the number of matchings of G of size λ.

Obviously, these functions are not polynomials in λ,
because they vanish for large enough λ.
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Pngi’s: Parametrized numeric graph invariants

Let K denote a class of finite (colored) graphs
(hypergraphs, or structures over some fixed vocabulary).

A parametrized numeric graph invariant (pngi) is a function α(G, λ)

K × N → N

such that, for each λ ∈ N and G1 isomorphic to G2

we have that α(G1, λ) = α(G2, λ).

Let α(G, λ) and Let β(G, λ) be two pngi’s.
Clearly, we can form new such invariants by forming

• α(G, λ) + β(G, λ), α(G, λ) · β(G, λ), 2α(G,λ)

• If α(G, λ) = 0 for all large enough λ,

β(G, λ) =
∑

n

α(G, n)λn

If α(G, λ) ∈ Z[λ] is a polynomial, we speak of graph polynomials.
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The behaviour of parametrized numeric graph invariants

The pngi’s of the form α(G, λ) we have seen so far show the following be-
haviour:

• For each graph there is bG ∈ N such that α(G, λ) ≤ λbG.

• For each n ∈ N we have α(G, n) ∈ N.

• There is nG ∈ N such that
either α(G, n) = 0 for all n ≥ nG

or α(G, n) is not decreasing for all n ≥ nG.
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Coloring Properties

A Model-Theoretic View
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Enter logic: Model theory

Our framework is as follows:

• Let M be a finite τ-structure with universe M .

• Let k ∈ N and [k] = {0, . . . , k − 1}.

• Let Mk be the two-sorted τ ′ structure 〈M, [k]〉.

• Let F be an r-ary function symbol with interpretations in Mk of the form
f : M r → [k].

19
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Coloring properties, I

We denote relation symbols by bold-face letters, and their interpretation by the

corresponding roman-face letter.

Let τR = τ1∪{R}, where is R is a two-sorted relation symbol of arity r = s+ t.

A class of τR- structures P is a coloring property if

Extension Property: Let M be fixed. Then Mk is a substructure of Mn for
each n ≥ k. Let R0 be a fixed relation on Mk. If 〈Mk, R0〉 ∈ P and n ≥ k
then also 〈Mn, R0〉 ∈ P.

Isomorphism Property: P is closed under τR-isomorphisms.

This implies the permutation property:

Permutation Property: Let R ⊆ Ms× [k]t be a fixed relation on Mk. For π is a permutation
of [k], We define Rπ = {(m̄, π(ā)) ∈ M×[k]t : (m̄, ā) ∈ R}.

Then 〈Mk, R〉 ∈ P iff 〈Mk, Rπ〉 ∈ P.

We refer to R and its interpretations R as coloring predicates.
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Coloring properties, II

(i) A coloring property is bounded, if for every M there is a number NM

such that for all k ∈ N the set of colors

{x ∈ [k] : ∃ȳ ∈ MmR(ȳ, x)}

has size at most NM .

(ii) A coloring property is range bounded, if its range is bounded in the
following sense: There is a number d ∈ N such that for every M and
ȳ ∈ Mm the set {x ∈ [k] : R(ȳ, x)} has at most d elements.

Clearly, if a coloring property is range bounded, it is also bounded.

21
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Coloring properties, III

Let φ be a sentence of some logic L.

L could be first order logic, second order logic, infinitary logic, or some fragment thereof.

(i) φ(R) is a coloring formula, if the class of its models, which are of the
form of the form 〈M, [k], R〉, is a coloring property.

(ii) Let P be a bounded coloring property. A relation RM ⊂ Mm × [k] is a
generalised k − P-coloring if 〈Mk, R〉 ∈ P.

(iii) We denote by

χP(M, k)

the number of generalised k −P-coloring R on M.

If P is defined by φ(R) we also write

χφ(R)(M, k).

22
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Generalized multi-colorings, I

To construct also graph polynomials in several variables,
we extend the definition to deal with several color-sets,
and also call them generalized chromatic polynomials.

Let M be a τ-structure with universe M .

We say an (α + 1)-sorted structure

〈M, [k1], . . . , [kα], R〉

for the vocabulary τα,R with

R ⊂ Mm × [k1]
m1 × . . . × [kα]

mα

is a generalized coloring of M for colors k̄α = (k1, . . . , kα).

By abuse of notation,

mi = 0 is taken to mean the color-set ki is not used in R.
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Generalized multi-colorings, II

A class of generalized multi-colorings P is a coloring property if it satisfies
the following conditions:

Isomorphism property : P is closed under τα,R-isomorphisms.

Extension property : For every M, k1 ≤ k′
1, . . . , kα ≤ k′

α, and R,

if 〈M, [k1], . . . , [kα], R〉 ∈ P then 〈M, [k′
1], . . . , [k

′
α], R〉 ∈ P.

Non-occurrence property : Assume

R ⊂ Mm × [k1]
m1 × . . . × [kα]

mα

with mi = 0, and

〈M, [k1], . . . , [kα], R〉 ∈ P,

then for every k′
i ∈ N,

〈M, [k1], . . . , [k
′
i], . . . , [kα], R〉 ∈ P.

The boundedness conditions are the obvious adaptions.
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Main result, A

Generalized chromatic polynomials
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Main result, A

THEOREM A: If φ(R) is an L-sentence and defines a bounded

coloring propert then

χφ(M, k1, . . . kα) ∈ Z[k1, . . . kα]

is indeed a polynomial in k1, . . . kα.

We shall call polynomials obtained like this L−MG-polynomials.

MG-polynomial for model theoretic growth polynomial

(as studied by B. Zilber in his work on categoricity).

Corollary: Taking L to be (monadic) second order logic,

this covers all the previous examples,

and allows us to construct infinitely many more MG-polynomials.
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A theorem with an elementary generic proof

suggested simplification by A. Blass

We prove something a bit stronger (for the case of α = 1, i.e., one color set):

THEOREM A’: For every M the number χφ(R)(M, k) is a polynomial in k
of the form

d·|M |m
∑

j=0

cφ(R)(M, j)
(k

j

)

where cφ(R)(M, j) is the number of generalised k − φ-colorings R with a fixed
set of j colors.

In the light of this theorem we call χφ(R)(M, k)

also a generalised chromatic polynomial.
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Proof

We first observe that any generalised coloring R uses at most

N = d· | M |m

of the k colors.

For any j ≤ N , let cφ(R)(M, j) be the number of colorings, with a fixed set of
j colors, which are generalised vertex colorings and use all j of the colors.

Next we observe that any permutation of the set of colors used is also a
coloring.

Therefore, given k colors, the number of vertex colorings that use exactly j

of the k colors is the product of cφ(R)(M, j) and the binomial coefficient
(

k
j

)

.

So

χφ(R)(M, k) =
∑

j≤N

cφ(R)(M, j)
(k

j

)

The right side here is a polynomial in k, because each of the binomial coef-

ficients is. We also use that for k ≤ j we have
(

k
j

)

= 0. Q.E.D.
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Graph polynomials

29
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Prominent graph polynomials

• The chromatic polynomial (G. Birkhoff, 1912)

• The Tutte polynomial and its colored versions
(W.T. Tutte 1954, B. Bollobas and O. Riordan, 1999);

• The characteristic polynomial
(T.H. Wei 1952, L.M. Lihtenbaum 1956, L. Collatz and U. Sinogowitz 1957)

• The various matching polynomials (O.J. Heilman and E.J. Lieb, 1972)

• Various clique and independent set polynomials (I. Gutman and F. Harary 1983)

• The Farrel polynomials (E.J. Farrell, 1979)

• The cover polynomials for digraphs (F.R.K. Chung and R.L. Graham, 1995)

• The interlace-polynomials
(M. Las Vergnas, 1983, R. Arratia, B. Bollobás and G. Sorkin, 2000)

• The various knot polynomials (of signed graphs)
(Alexander polynomial, Jones polynomial, HOMFLY-PT polynomial, etc)
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Application of graph polynomials

There are plenty of applications of graph polynomials in

• Graph theory proper

• Knot theory

• Chemistry

• Statistical mechanics

• Quantum physics

• Quantum computing

• Biology
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Using our framework: The matching polynomial

We want to show that the matching polynomial can be obtained in our frame-
work.

• For a graph G = (V, E) we form a 4-sorted structure

M(G) = 〈V, E, ℘(V ), ℘(E),∈, RG〉

where ∈ is the membership relation between elements of V and ℘(V ),
and elements of E and ℘(E) respectively,
and RG is the incidence relation between vertices and edges.

• M(G)k = 〈V, E, ℘(V ), ℘(E),∈, RG, [k]〉

• The formula φmatching(m, f) now says:

(i) m ∈ ℘(E) is a matching.

(ii) f is a function f : m → [k].
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Using our framework: The matching polynomial, contd

We replace k by λ.

Now we put ḡ(G, λ) to be the number of pairs (m, f) such that

〈M(G)λ, m, f〉 |= φmatching(m, f)

• For fixed m there are λ|m| many f ’s satisfying the formula φmatching(m, f).

• For matchings m with | m |= j we get m(G, j)λj many such pairs.

• Hence we get

ḡ(G, λ) =
∑

j

m(G, j)λj =
∑

M :M⊆E
M is a matching

∏

e:e∈M

λ = g(G, λ)
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Definability of graph polynomials

in (Monadic) Second Order Logic SOL (MSOL)
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Simple (M)SOL-definable graph polynomials

The graph polynomial ind(G, X) =
∑

i ind(G, i) · Xi, can be written also as

ind(G, X) =
∑

I⊆V (G)

∏

v∈I

X

where I ranges over all independent sets of G.
To be an independent set is definable by a formula of Monadic Second Order
Logic (MSOL) φ(I).

A simple MSOL-definable graph polynomial p(G, X) is a polynomial of
the form

p(G, X) =
∑

A⊆V (G):φ(A)

∏

v∈A

X

where A ranges over all subsets of V (G) satisfying φ(A)

and φ(A) is a (M)SOL-formula.
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General (M)SOL-definable graph polynomials

For the general case

• One allows several indeterminates X1, . . . , Xt.

• One gives an inductive definition.

• One allows an ordering of the vertices.

• One requires the definition to be invariant under the ordering, i.e.,
different orderings still give the same polynomial.

• This also allows to define the modular counting quantifiers
Cm,q ”there are, modulo q exactly m elements...”

The general case includes the Tutte polynomial, the cover poly-

nomial, and virtually all graph polynomials from the literature.
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Graph polynomials which are not MSOL-definable

without the assumption P 6= NP

Let c : E → [k] be an edge-coloring. c is path-rainbow if between any two
vertices u, v ∈ V there as a path where all the edges have different colors.

We denote by χrainbow(G, k) the number of path-rainbow colorings of G with
k colors.

Theorem:(T. Kotek and J.A.M.)

(i) χrainbow(G, k) is a polynomial in k.

(ii) χrainbow(G, k) is not MSOL-definable (but SOL-definable).

Proof: A more sophisticated use of connection matrices.

The same works also for harmonious colorings.
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Main Result, B

All graph polynomials are
generalized chromatic polynomials
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MG-polynomials and SOL-polynomials

The definition of MG-polynomials is very flexible and

can be extended to multivariate polynomials.

THEOREM B: The extended SOL-graph polynomials are ex-

actly the SOL-definable MG-polynomials.

Remark: In the proof for the matching polynomial we we used the powersets
of V and E as part of the structure M(G). One can iterate this idea, hence
also graph polynomials defined with higher order logic are MG-polynomials.

Remark: The theorem fails if we replace SOL by MSOL.
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Zilber’s growth functions

in

ℵ0-categorical and ω-stable structures
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The functor M.

Let G be a class of finite structures of a finite language τ0.

Let D1, . . . , Dk be countable infinite structures of finite languages τ1, . . . , τk,
correspondingly.

For every G ∈ G we construct the structure M(G, D1, . . . , Dk) of sorts G, D1, . . . , Dk

and F and the language τ = τ0 ∪ τ1 · · · ∪ τk and extra function symbol

Φ : G × F → D1 × . . . × Dk.

The only condition on Φ is

∀f, f ′ ∈ F ([∀g ∈ G Φ(g, f) = Φ(g, f ′)] → f = f ′).

We identify elements f ∈ F with functions f : G → D1 × · · · × Dk

and write f(g) instead of Φ(g, f).

In other words we have the canonical identification

Φ⋆ : F ↔ (D1 × · · · × Dk)
G,

and fixing an enumeration of G we may identify the right-hand-side with the cartesian power

(D1 × · · · × Dk)
|G|.
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Invariants of G

• By the virtue of the construction, given D1, . . . , Dk, the isomorphism type
of M(G, D1, . . . , Dk) depends only on G.

• Obviously, G can be recovered from M(G, D1, . . . , Dk).

• So, M(G, D1, . . . , Dk) can be seen as the complete invariant of G.

In particular, every definable subset S of F is an invariant of G.
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Observations

(i) M(G, D1, . . . , Dk) is definable using parameters
in the disjoint union D1 ∪ · · · ∪ Dk.

(ii) Assume that the theory of each Di is ℵ0-categorical.
Then the theory Th[M(G, D1, . . . , Dk)] is ℵ0-categorical.

(iii) Assume that the theory of each Di is strongly minimal.
Then the theory Th[M(G, D1, . . . , Dk)] is ω-stable
with k independent dimensions.
If k = 1 then the theory is categorical in uncountable cardinals.
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Finite model property

Using Theorem 7 of G. Cherlin and E. Hrushovski, Finite structures with few types, we have

• Any ℵ0-categorical and ω-stable theory has the finite model property.
Moreover any countable model M can be represented as

M =

∞
⋃

i=1

Mi,

i.e., as a union of an increasing chain of finite substructures (logically)
approximating M .

• The finite model property takes a very simple form for a strongly minimal
structure D, namely,
D has the finite model property if and only if acl (X) is finite for any
finite X ⊂ D.
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ℵ0-categorical and ω-stable structures and

the growth polynomials of their finite approximations

Zilber’s Theorem: Let M = M(G, D1, . . . , Dk).

Assume the finite model property holds in the strongly minimal structures
D1, . . . Dk.

Then for every finite C ⊂ M and any C-definable set S ⊂ M ℓ a
there is a polynomial pS ∈ Q[x] and a number nS such that for every finite
X ⊆ M with C ⊆ X,

(i) letting |Di ∩ acl (X)| = xi ≥ nS, we have

|S ∩ aclX| = pS(x1, . . . , xk);

(ii) rk (S) = deg(pS), the degree of the polynomial;

(iii) if g(S)=T for some automorphism g of M then pS = pT and nS = nT .

Furthermore, if C = ∅ we can take nS = 0.
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ℵ0-categorical and ω-stable structures

and

graph polynomials

THEOREM C: Fix n ∈ N. There is a functor Mn, mapping graphs G into
infinite structures Mn(G), such that

(i) Mn(G) is ℵ0-categorical and ω-stable;

(ii) every SOL-definable graph polynomial P in n indeterminates occurs in
Mn(G) as the growth function
of a first order definable n-ary relation.

Remarks: It works for τ-structure rather than graphs.

It also works for graph polynomials definable in higher order logic.
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Thank you for your attention !

If time would permit we could now discuss also complexity . . .

(only 20 minutes more)
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Complexity of evaluations
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References for Complexity, II
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The complexity of the chromatic polynomial, I

Theorem:

• χ(G,3) is ♯P-complete (Valiant 1979).

• χ(G,−1) is ♯P-complete (Linial 1986).

Question: What is the complexity of computing χ(G, λ) for
λ = λ0 ∈ Q or even for λ = λ0 ∈ C?
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The complexity of the chromatic polynomial, II

Let G1 ⊲⊳ G2 denote the join of two graphs.

We observe that

χ(G ⊲⊳ Kn, λ) = (λ)n · χ(G, λ − n) (⋆)

Hence we get

(i) χ(G ⊲⊳ K1,4) = 4 · χ(G,3)

(ii) χ(G ⊲⊳ Kn,3 + n) = (n + 3)n · χ(G,3) hence
for n ∈ N with n ≥ 3 it is ♯P-complete.
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The complexity of the chromatic polynomial, III

If we have have an oracle for some q ∈ Q − N which allows us to compute
χ(G, q) we can compute χ(G, q′) for any q′ ∈ Q as follows:

Algorithm A(q, q′, | V (G) |):

(i) Given G the degree of χ(G, q) is at most n =| V (G) |.

(ii) Use the oracle and (⋆) to compute n + 1 values of χ(G, λ).

(iii) Using Lagrange interpolation we can compute χ(G, q′) in polynomial time.

We note that this algorithm is purely algebraic and works for all graphs G,

q ∈ (F ) − N and q′ ∈ F for any field F extending Q.
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The complexity of the chromatic polynomial, IV

We summarize the situation for the chromatic polynomial as follows:

(i) We have an exception set C = N which is a countable union of semi-
algebraic sets of dimension 0 in the field C.

(ii) We have a numeric graph invariant f(G) =| G | which is FP.

(iii) We have one algebraic algorithm A(q, q′, f(G)) which runs in polynomial
time in q, q′ and f(G) which calls the oracle χ(−, q′).
q, q′ are in any finite dimensional algebraic extension field F of Q.

(iv) The algorithm A(q, q′, f(G)) reduces uniformly,
for any q ∈ F −C, the evaluation of χ(G, q) into the evaluation of χ(G,3).
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The nature of the algorithm A, I

In the case of χ(−, q) and χ(−, q′)

• The input of A is f(G)) ∈ F ,
in this case the degree of the χ(G, λ)

• The output of A is a rational function A(q, q′, f(G)) ∈ F (x0, x1, . . . xf(G)+2).
the Lagrange interpolation for f(G) + 1 points for q, q′

• The final result of the reduction is obtained by evaluating this rational
function at

x0 = χ(G, q′), x1 = χ(G ⊲⊳ K1, q
′), . . . , xn = χ(G ⊲⊳ Kn, q′)

xn+1 = q, xn+2 = q′

A suitable model of computation for A is

the unit-cost model BSS
advocated by L. Blum, M. Shub and S. Smale.
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The uniform difficult point property for χ(G, λ)

(i) We have shown:

For all q ∈ Q − {0,1,2} and q′ ∈ Q the numeric graph invariants χ(−, q)
and χ(−, q′) polynomial time Turing reducible to each other.

(ii) But we have shown much more:

There is ONE algebraic reduction scheme

for all the instances χ(G, q) to χ(G, q′),

where q, q′ are not in N.
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Uniform algebraic reductions for evaluations of graph

polynomials.

Let f = Φ(G, q̄) and g = Φ(G, q̄′) two evaluations of the same graph polyno-
mial Φ. We say that f algebraically reduces to g uniformly in q̄, q̄′,
and we write f <P

UA g, if there exists

(i) a finite set AΦ = {α1, . . . , αa} of size a of polynomial time computable
numeric graph invariants α : Graphs → Q, depending on Φ only;

(ii) a polynomial time computable family ri : i ∈ N of polynomial time com-
putable graph transductions ri : Graphs → Graphs, depending on Φ only;

The family is polynomial time computable in Φ and i.

(iii) a polynomial time computable function AΦ : Qa → Q(x1, x2, . . .),
depending on Φ only;

such that for every G ∈ Graphs we have that

f(G) = AΦ(α1(G), . . . , αa(G))
(

g(r1(G), . . . , g(rpoly(G)(G), q̄, q̄′
)
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The uniform difficult point property UDPP

Let Φ(G, x̄m) be a graph polynomial in m variables.

Φ(G, x̄m) has the uniform difficult point property (DPP) if the following holds:

There exists an exception set CΦ which is a countable union of semi-algebraic
sets of dimension < m in the field C, and for all q not in the exception set C,
Φ(−q) is ♯P hard.

Furthermore, for any q̄1, q̄2 ∈ F m − CΦ we have

Φ(G, q̄1) <P
UA Φ(G, q̄2).

In other words, all the evaluations for q̄ not in the exception set, are of the

same difficulty and uniformly algebraically reducible to each other.
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The Tutte polynomial

The paradigm of the DPP was inspired by the work of
Linial and Jaeger, Vertigan and Welsh.

(i) For the classical Tutte polynomial, the uniform DPP was proven by
Jaeger, Vertigan and Welsh in 1990.

(ii) For the colored Tutte polynomial as defined by Bollobás and Riordan
(1999), the uniform DPP was proven by Bläser, Dell and Makowsky in
2007.

(iii) This also holds for the multivariate Tutte polynomial, the Pott’s model,
if restricted to a fixed finite number of variables.
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More polynomials with the uniform DPP

The uniform DPP was also proven for

(i) the cover polynomial C(G, x, y) introduced by Chung and Graham (1995)
by Bläser Dell, 2007

(ii) the interlace polynomial (aka Martin polynomial) introduced by Martin
(1977) and independently by Arratia, Bollobás and Sorkin (2000),
by Bläser and Hoffmann, 2007

(iii) the matching polynomial,
by Averbouch, Kotek and Makowsky, 2007

(iv) the harmonious chromatic polynomial,
by Averbouch, Kotek and Makowsky, 2007
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What is the pattern behind this?

In establishing the UDPP one uses the fact that in the examples the evalua-
tions at integer points are in ♯P.

We call such graph polynomials counting.

There seems to be dichtomy property:

• Either all the evaluations of a graph polynomial Φ are polynomial time
computable, or

• Φ has the uniform difficult point property UDPP.

Conjecture: This dichtomy holds for all counting MSOL-definable

graph polynomials.

Note that it holds for the harmonious chromatic polynomial, which is not MSOL-definable.
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Thank you for your attention !
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