Small Polish structures

Krzysztof Krupiński

Instytut Matematyczny Uniwersytetu Wrocławskiego

August 10, 2009

Polish structures

Definition

A Polish structure is a pair (X, G) where G is a Polish group acting faithfully on a set X so that $G_x <_c G$ for every $x \in X$.

Examples

- Profinite structures: X a profinite space, G a compact group, the action is continuous,
- Polish G-spaces: X a Polish space, G a Polish group, the action is continuous, e.g.:
 - X a compact metric space, G = Homeo(X) the group of all homeomorphisms of X with the compact-open topology,
 - X a compact metric group, G = Aut(X) the group of all topological automorphisms of X with the c-o topology,
- Borel G-spaces: X a Polish space, G a Polish group, the action is Borel-measurable.

Polish structures

Definition

A Polish structure is a pair (X, G) where G is a Polish group acting faithfully on a set X so that $G_x <_c G$ for every $x \in X$.

Examples

- Profinite structures: X a profinite space, G a compact group, the action is continuous,
- Polish G-spaces: X a Polish space, G a Polish group, the action is continuous, e.g.:
 - X a compact metric space, G = Homeo(X) the group of all homeomorphisms of X with the compact-open topology,
 - X a compact metric group, G = Aut(X) the group of all topological automorphisms of X with the c-o topology,
- Borel G-spaces: X a Polish space, G a Polish group, the action is Borel-measurable.

Smallness

Definition

A Polish structure (X, G) is small if for every $n \in \omega$, there are only countably many orbits on X^n .

Examples of small Polish structures

- (S^n , Homeo(S^n)), $n \in \omega$,
- 2 (Iⁿ, Homeo(Iⁿ)), $n \in \omega \cup \{\omega\}$,
- $((S^1)^n,$ Homeo $((S^1)^n)), \ n \in \omega \cup \{\omega\},$
- (P, Homeo(P)), P the pseudo-arc,
- (H, Aut(H)), H a profinite abelian group of finite exponent, Aut(H) - the group of all topological automorphisms of H,
- (H, Aut⁰(H)), H as above, Aut⁰(H) the group of all automorphisms of H preserving a distinguished inverse system indexed by ω.

Smallness

Definition

A Polish structure (X, G) is small if for every $n \in \omega$, there are only countably many orbits on X^n .

Examples of small Polish structures

- $(S^n, Homeo(S^n)), n \in \omega,$
- ② $(I^n, Homeo(I^n)), n \in \omega \cup \{\omega\},$
- **③** $((S^1)^n, Homeo((S^1)^n)), n ∈ ω ∪ {ω},$
- (P, Homeo(P)), P the pseudo-arc,
- (H, Aut(H)), H a profinite abelian group of finite exponent, Aut(H) - the group of all topological automorphisms of H,
- (H, Aut⁰(H)), H as above, Aut⁰(H) the group of all automorphisms of H preserving a distinguished inverse system indexed by ω.

(X, G) -a compact [profinite] structure a -finite tuple of elements of X A, B -finite subsets of X $o(a/A) := \{f(a) : f \in G_A\}$

Definition

$$a \stackrel{a}{\longrightarrow}_{A} B \iff o(a/AB) \subseteq_{o} o(a/A),$$

 $a \stackrel{a}{\longrightarrow}_{A} B \iff o(a/AB) \subseteq_{nwd} o(a/A).$

Fact (Newelski)

 $\stackrel{m}{\cup}$ is invariant, symmetric and transitive. If (X, G) is small, then $\stackrel{m}{\cup}$ satisfies the existence of independent extensions.

/⊒ ▶ ∢ ⊒ ▶

(X, G) -a compact [profinite] structure a -finite tuple of elements of X A, B -finite subsets of X $o(a/A) := \{f(a) : f \in G_A\}$

Definition

$$a \xrightarrow{m}_{A} B \iff o(a/AB) \subseteq_o o(a/A),$$

 $a \xrightarrow{m}_{A} B \iff o(a/AB) \subseteq_{nwd} o(a/A).$

Fact (Newelski)

 $\stackrel{m}{\cup}$ is invariant, symmetric and transitive. If (X, G) is small, then $\stackrel{m}{\cup}$ satisfies the existence of independent extensions.

- **→** → **→**

(X, G) -a compact [profinite] structure a -finite tuple of elements of X A, B -finite subsets of X $o(a/A) := \{f(a) : f \in G_A\}$

Definition

$$a \xrightarrow{m}_{A} B \iff o(a/AB) \subseteq_o o(a/A),$$

 $a \xrightarrow{m}_{A} B \iff o(a/AB) \subseteq_{nwd} o(a/A).$

Fact (Newelski)

 $\stackrel{m}{\longrightarrow}$ is invariant, symmetric and transitive. If (X, G) is small, then $\stackrel{m}{\longrightarrow}$ satisfies the existence of independent extensions.

(X, G) - a Polish structure a - a finite tuple of elements of X A, B - finite subsets of X $\pi_A : G_A \to o(a/A)$ is defined by $\pi_A(g) = ga$.

Definition

$$a \downarrow_{A}^{m} B \iff \pi_{A}^{-1}[o(a/AB)] \subseteq_{nm} \pi_{A}^{-1}[o(a/A)],$$
$$a \downarrow_{A}^{m} B \iff \pi_{A}^{-1}[o(a/AB)] \subseteq_{m} \pi_{A}^{-1}[o(a/A)].$$

Theorem

 \bigcup_{m}^{m} is invariant, symmetric and transitive. If (X, G) is small, then \bigcup_{m}^{m} satisfies the existence of independent extensions.

Theorem

In compact [profinite] structures, $\downarrow^m =$

(X, G) - a Polish structure a - a finite tuple of elements of X A, B - finite subsets of X $\pi_A : G_A \to o(a/A)$ is defined by $\pi_A(g) = ga$.

Definition

$$a \downarrow_{A}^{m} B \iff \pi_{A}^{-1}[o(a/AB)] \subseteq_{nm} \pi_{A}^{-1}[o(a/A)],$$
$$a \downarrow_{A}^{m} B \iff \pi_{A}^{-1}[o(a/AB)] \subseteq_{m} \pi_{A}^{-1}[o(a/A)].$$

Theorem

 \bigcup_{m}^{m} is invariant, symmetric and transitive. If (X, G) is small, then \bigcup_{m}^{m} satisfies the existence of independent extensions.

Theorem

In compact [profinite] structures, $\bigcup_{m=1}^{m} = \bigcup_{m=1}^{m}$

(X, G) - a Polish structure a - a finite tuple of elements of X A, B - finite subsets of X $\pi_A : G_A \to o(a/A)$ is defined by $\pi_A(g) = ga$.

Definition

$$a \downarrow_{A}^{m} B \iff \pi_{A}^{-1}[o(a/AB)] \subseteq_{nm} \pi_{A}^{-1}[o(a/A)],$$
$$a \downarrow_{A}^{m} B \iff \pi_{A}^{-1}[o(a/AB)] \subseteq_{m} \pi_{A}^{-1}[o(a/A)].$$

Theorem

 \bigcup_{m}^{m} is invariant, symmetric and transitive. If (X, G) is small, then \bigcup_{m}^{m} satisfies the existence of independent extensions.

Theorem

In compact [profinite] structures, $\downarrow^m = \square$

(X, G) - a Polish structure a - a finite tuple of elements of X A, B - finite subsets of X $\pi_A : G_A \to o(a/A)$ is defined by $\pi_A(g) = ga$.

Definition

$$a \downarrow_{A}^{m} B \iff \pi_{A}^{-1}[o(a/AB)] \subseteq_{nm} \pi_{A}^{-1}[o(a/A)],$$
$$a \downarrow_{A}^{m} B \iff \pi_{A}^{-1}[o(a/AB)] \subseteq_{m} \pi_{A}^{-1}[o(a/A)].$$

Theorem

 $\int_{-\infty}^{m}$ is invariant, symmetric and transitive. If (X, G) is small, then $\int_{-\infty}^{m}$ satisfies the existence of independent extensions.

Theorem

In compact [profinite] structures, $\bigcup_{m=1}^{m} \bigcup_{m=1}^{m}$.

 $\mathcal{N}\mathcal{M}$ -rank and *nm*-stability

(X, G) - a small Polish structure \mathcal{NM} : orbits over finite sets $\rightarrow \mathit{Ord} \cup \{\infty\}$

 $\mathcal{NM}(a/A) \ge \alpha + 1$ iff there is a finite set $B \supseteq A$ such that $a \swarrow^m_A B$ and $\mathcal{NM}(a/B) \ge \alpha$.

Definition

$$\mathcal{NM}(X) = \sup\{\mathcal{NM}(x) : x \in X\}.$$

Definition

(X, G) is *nm*-stable if for every $x \in X$, $\mathcal{NM}(x) < \infty$.

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\mathcal{N}\mathcal{M}$ -rank and *nm*-stability

(X, G) - a small Polish structure \mathcal{NM} : orbits over finite sets $\rightarrow \mathit{Ord} \cup \{\infty\}$

 $\mathcal{NM}(a/A) \ge \alpha + 1$ iff there is a finite set $B \supseteq A$ such that $a \swarrow^m_A B$ and $\mathcal{NM}(a/B) \ge \alpha$.

Definition

$$\mathcal{NM}(X) = \sup\{\mathcal{NM}(x) : x \in X\}.$$

Definition

(X, G) is *nm*-stable if for every $x \in X$, $\mathcal{NM}(x) < \infty$.

伺 ト イヨト イヨト

 $\mathcal{N}\mathcal{M}$ -rank and *nm*-stability

(X, G) - a small Polish structure \mathcal{NM} : orbits over finite sets $\rightarrow \mathit{Ord} \cup \{\infty\}$

 $\mathcal{NM}(a/A) \ge \alpha + 1$ iff there is a finite set $B \supseteq A$ such that $a \swarrow^m_A B$ and $\mathcal{NM}(a/B) \ge \alpha$.

Definition

$$\mathcal{NM}(X) = \sup\{\mathcal{NM}(x) : x \in X\}.$$

Definition

(X,G) is *nm*-stable if for every $x \in X$, $\mathcal{NM}(x) < \infty$.

Examples

- In $(S^n, Homeo(S^n))$, $\mathcal{NM}(S^n) = 1$.
- In $(I^{\omega}, Homeo(I^{\omega})), \mathcal{NM}(I^{\omega}) = 1.$
- (P, Homeo(P)) where P is the pseudo-arc is not *nm*-stable.

• In
$$((\mathbb{Z}_{p^n})^{\omega}, Aut((\mathbb{Z}_{p^n})^{\omega})), \mathcal{NM}((\mathbb{Z}_{p^n})^{\omega}) = n.$$

Remark

Everything that was said about $\int_{-\infty}^{\infty}$ works in a suitably defined imaginary extension X^{eq} of X (e.g. if G acts continuously on a space X and E is an invariant, closed equivalence relation on X^n , then $X^n/E \subseteq X^{eq}$).

Examples

- In $(S^n, Homeo(S^n))$, $\mathcal{NM}(S^n) = 1$.
- In $(I^{\omega}, Homeo(I^{\omega})), \mathcal{NM}(I^{\omega}) = 1.$
- (P, Homeo(P)) where P is the pseudo-arc is not *nm*-stable.

• In
$$((\mathbb{Z}_{p^n})^{\omega}, Aut((\mathbb{Z}_{p^n})^{\omega})), \mathcal{NM}((\mathbb{Z}_{p^n})^{\omega}) = n.$$

Remark

Everything that was said about \int_{-m}^{m} works in a suitably defined imaginary extension X^{eq} of X (e.g. if G acts continuously on a space X and E is an invariant, closed equivalence relation on X^n , then $X^n/E \subseteq X^{eq}$).

Compact G-groups

Definition

A Polish [compact] G-group is a Polish structure (H, G) where G acts continuously and by automorphisms on a Polish [compact] group H.

Main examples of compact G-groups

(H, Aut(H)) where H is a compact metric group.

Definition

A profinite group regarded as profinite structure is a profinite structure (H, G) where H is a profinite group and G acts on it by automorphisms. In particular, G is also a profinite group.

Compact G-groups

Definition

A Polish [compact] G-group is a Polish structure (H, G) where G acts continuously and by automorphisms on a Polish [compact] group H.

Main examples of compact G-groups

(H, Aut(H)) where H is a compact metric group.

Definition

A profinite group regarded as profinite structure is a profinite structure (H, G) where H is a profinite group and G acts on it by automorphisms. In particular, G is also a profinite group.

Compact G-groups

Definition

A Polish [compact] G-group is a Polish structure (H, G) where G acts continuously and by automorphisms on a Polish [compact] group H.

Main examples of compact G-groups

(H, Aut(H)) where H is a compact metric group.

Definition

A profinite group regarded as profinite structure is a profinite structure (H, G) where H is a profinite group and G acts on it by automorphisms. In particular, G is also a profinite group.

Remark

Each profinite group (H, G) is a compact G-group.

But

Remark

If H is a profinite group, then Aut(H) is not necessarily compact, so (H, Aut(H)) needn't be a profinite structure.

Remark

- If (H, G) is a small Polish *G*-group, and $S \subseteq H$ is finite, then $\overline{\langle S \rangle}$ is countable, i.e. $\langle S \rangle$ does not have limit points.
- **2** If (H, G) is a small compact G-group, then H is locally finite.

Example

Consider the additive structure on \mathbb{Q} . Take the discrete topology on \mathbb{Q} and the product topology on \mathbb{Q}^{ω} . For a suitably chosen Polish group G, (\mathbb{Q}^{ω}, G) is a small Polish G-group of \mathcal{NM} -rank 1, which is torsion-free and 0-dimensional.

Problem

Find non 0-dimensional small Polish G-groups.

< □ > <

Remark

- If (H, G) is a small Polish *G*-group, and $S \subseteq H$ is finite, then $\overline{\langle S \rangle}$ is countable, i.e. $\langle S \rangle$ does not have limit points.
- **2** If (H, G) is a small compact G-group, then H is locally finite.

Example

Consider the additive structure on \mathbb{Q} . Take the discrete topology on \mathbb{Q} and the product topology on \mathbb{Q}^{ω} . For a suitably chosen Polish group G, (\mathbb{Q}^{ω}, G) is a small Polish G-group of \mathcal{NM} -rank 1, which is torsion-free and 0-dimensional.

Problem

Find non 0-dimensional small Polish G-groups.

Remark

- If (H, G) is a small Polish *G*-group, and $S \subseteq H$ is finite, then $\overline{\langle S \rangle}$ is countable, i.e. $\langle S \rangle$ does not have limit points.
- **2** If (H, G) is a small compact G-group, then H is locally finite.

Example

Consider the additive structure on \mathbb{Q} . Take the discrete topology on \mathbb{Q} and the product topology on \mathbb{Q}^{ω} . For a suitably chosen Polish group G, (\mathbb{Q}^{ω}, G) is a small Polish G-group of \mathcal{NM} -rank 1, which is torsion-free and 0-dimensional.

Problem

Find non 0-dimensional small Polish G-groups.

▲ □ ▶ ▲ □ ▶ ▲

Conjectures on small profinite groups

Proposition

If (H, G) is a small compact G-group, then H is a profinite group. But G is not necessarily compact, so (H, G) needn't be a small profinite group.

(H, G) - a small profinite group

Newelski's Conjecture

H is abelian-by-finite.

Intermediate Conjectures

- (A) H is solvable-by-finite.
- (B) If H is solvable-by-finite, then it is nilpotent-by-finite.
- (C) If *H* is nilpotent-by-finite, then it is abelian-by-finite.

Conjectures on small profinite groups

Proposition

If (H, G) is a small compact G-group, then H is a profinite group. But G is not necessarily compact, so (H, G) needn't be a small profinite group.

(H, G) - a small profinite group

Newelski's Conjecture

H is abelian-by-finite.

Intermediate Conjectures

- (A) H is solvable-by-finite.
- (B) If H is solvable-by-finite, then it is nilpotent-by-finite.
- (C) If *H* is nilpotent-by-finite, then it is abelian-by-finite.

Conjectures on small profinite groups

Proposition

If (H, G) is a small compact G-group, then H is a profinite group. But G is not necessarily compact, so (H, G) needn't be a small profinite group.

(H, G) - a small profinite group

Newelski's Conjecture

H is abelian-by-finite.

Intermediate Conjectures

- (A) H is solvable-by-finite.
- (B) If H is solvable-by-finite, then it is nilpotent-by-finite.
- (C) If H is nilpotent-by-finite, then it is abelian-by-finite.

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Results on small profinite groups

Theorem (Wagner)

Each small, nm-stable profinite group is abelian-by-finite.

Theorem (Wagner)

Each small, nm-stable profinite group is of finite NM-rank.

▲ □ ▶ ▲ 三 ▶ ▲

Results on small profinite groups

Theorem (Wagner)

Each small, nm-stable profinite group is abelian-by-finite.

Theorem (Wagner)

Each small, nm-stable profinite group is of finite NM-rank.

/⊒ ▶ ∢ ⊒ ▶

The conjectures for small compact G-groups

From now on, we consider generalizations of Conjectures (A), (B), (C) to the wider context of small compact G-groups. It turns out that in general they are all false.

Counter-example to (A)

H - any finite non-solvable group S_{∞} - the group of all permutations of \mathbb{N} S_{∞} acts on H^{ω} by $\sigma \langle h_0, h_1, \ldots \rangle = \langle h_{\sigma(0)}, h_{\sigma(1)}, \ldots \rangle$. Then (H^{ω}, S_{∞}) is a small compact S_{∞} -group, and H^{ω} is

The conjectures for small compact G-groups

From now on, we consider generalizations of Conjectures (A), (B), (C) to the wider context of small compact G-groups. It turns out that in general they are all false.

Counter-example to (A)

H - any finite non-solvable group S_{∞} - the group of all permutations of \mathbb{N} S_{∞} acts on H^{ω} by $\sigma \langle h_0, h_1, \ldots \rangle = \langle h_{\sigma(0)}, h_{\sigma(1)}, \ldots \rangle$. Then (H^{ω}, S_{∞}) is a small compact S_{∞} -group, and H^{ω} is not solvable-by-finite.

Results on small, nm-stable compact G-groups

(H, G) - a small compact G-group

Theorem

If (H, G) is nm-stable, then H is nilpotent-by-finite.

Theorem (K., Wagner)

If $\mathcal{NM}(H) \leq \omega$, then H is abelian-by-finite.

▲ □ ▶ ▲ □ ▶ ▲

Results on small, nm-stable compact G-groups

(H, G) - a small compact G-group

Theorem

If (H, G) is nm-stable, then H is nilpotent-by-finite.

Theorem (K., Wagner)

If $\mathcal{NM}(H) \leq \omega$, then H is abelian-by-finite.

Infinite ordinal \mathcal{NM} -ranks are possible

Example

- Choose $\omega = I_0 \supseteq I_1 \supseteq \ldots$ so that $I_i \setminus I_{i+1}$ are all infinite and $\bigcap I_i = \emptyset$,
- $H_i := \{\eta \in \mathbb{Z}_p^{\omega} : \eta(j) = 0 \text{ for all } j \in I_i\}, i \in \omega,$
- $G := \{g \in Aut(\mathbb{Z}_p^{\omega}) : g[H_i] = H_i \text{ for every } i \in \omega\}.$

Then:

- $(\mathbb{Z}^{\omega}_{p}, G)$ is a small compact *G*-group,
- In H₀ <_{nwd} H₁ <_{nwd} ... is an infinite increasing sequence of Ø-closed subgroups.

Infinite ordinal \mathcal{NM} -ranks are possible

Example

- Choose $\omega = I_0 \supseteq I_1 \supseteq \ldots$ so that $I_i \setminus I_{i+1}$ are all infinite and $\bigcap I_i = \emptyset$,
- $H_i := \{\eta \in \mathbb{Z}_p^{\omega} : \eta(j) = 0 \text{ for all } j \in I_i\}, i \in \omega,$
- $G := \{g \in Aut(\mathbb{Z}_p^{\omega}) : g[H_i] = H_i \text{ for every } i \in \omega\}.$

Then:

Open questions on small Polish G-groups

Question

Is every small, *nm*-stable Polish *G*-group abelian-by-countable?

Even the following question is open.

Question

Is every small Polish G-group of \mathcal{NM} -rank 1 abelian-by-countable?

Future investigations of Polish structures

- Prove counterparts of some deep model theoretic results.
- Find further examples, especially of small Polish *G*-groups; understand which compact metric spaces with the full group of homeomorphisms are small.
- Investigate the structure of groups and rings.
- Try to apply the introduced model theoretic tools to purely descriptive set theoretic problems.
- Try to find a notion of interpretability in first order structures.