On Shapiro's Conjecture in a Zilber field

Giuseppina Terzo

Seconda Università degli Studi di Napoli

Bedlewo 9-14 August 2009
*joint work with Paola D'Aquino and Angus Macintyre

Goals

- Exponential rings, exponential fields and exponential polynomial ring
- Factorization Theorem for exponential polynomials
- Shapiro's Conjecture in \mathbb{C} and in a Zilber field

Goals

- Exponential rings, exponential fields and exponential polynomial ring
- Factorization Theorem for exponential polynomials
- Shapiro's Conjecture in \mathbb{C} and in a Zilber field

Goals

- Exponential rings, exponential fields and exponential polynomial ring
- Factorization Theorem for exponential polynomials
- Shapiro's Conjecture in \mathbb{C} and in a Zilber field

Goals

- Exponential rings, exponential fields and exponential polynomial ring
- Factorization Theorem for exponential polynomials
- Shapiro's Conjecture in \mathbb{C} and in a Zilber field

Exponential rings

Definition: An exponential ring, or E-ring, is a pair (R, E) with R a ring (commutative with 1) and

$$
E:(R,+) \rightarrow(\mathcal{U}(R), \cdot)
$$

a map of the additive group of R into the multiplicative group of units of R satisfying
(1) $E(x+y)=E(x) \cdot E(y)$ for all $x, y \in R$
(2) $E(0)=1$.
(K, E) is an E-field if K is a field.

Exponential rings

Definition: An exponential ring, or E-ring, is a pair (R, E) with R a ring (commutative with 1) and

$$
E:(R,+) \rightarrow(\mathcal{U}(R), \cdot)
$$

a map of the additive group of R into the multiplicative group of units of R satisfying
(1) $E(x+y)=E(x) \cdot E(y)$ for all $x, y \in R$
(2) $E(0)=1$.
(K, E) is an E-field if K is a field.

Exponential rings

Definition: An exponential ring, or E-ring, is a pair (R, E) with R a ring (commutative with 1) and

$$
E:(R,+) \rightarrow(\mathcal{U}(R), \cdot)
$$

a map of the additive group of R into the multiplicative group of units of R satisfying
(1) $E(x+y)=E(x) \cdot E(y)$ for all $x, y \in R$
(2) $E(0)=1$.
(K, E) is an E-field if K is a field.

Exponential rings

Definition: An exponential ring, or E-ring, is a pair (R, E) with R a ring (commutative with 1) and

$$
E:(R,+) \rightarrow(\mathcal{U}(R), \cdot)
$$

a map of the additive group of R into the multiplicative group of units of R satisfying
(1) $E(x+y)=E(x) \cdot E(y)$ for all $x, y \in R$
(2) $E(0)=1$.
(K, E) is an E-field if K is a field.

Exponential rings

Definition: An exponential ring, or E-ring, is a pair (R, E) with R a ring (commutative with 1) and

$$
E:(R,+) \rightarrow(\mathcal{U}(R), \cdot)
$$

a map of the additive group of R into the multiplicative group of units of R satisfying
(1) $E(x+y)=E(x) \cdot E(y)$ for all $x, y \in R$
(2) $E(0)=1$.
(K, E) is an E-field if K is a field.

Examples

Examples:

(a $\left(\mathbb{R}, e^{x}\right) ;\left(\mathbb{C}, e^{x}\right) ;$
(2) (R, E) where R is any ring and $E(x)=1$ for all $x \in R$.
((S $[\dot{t}], E)$ where S is E-field of characteristic 0 and $S[t]$ the ring of formal power series in t over S. Let $f \in S[t]$, where $f=r+f_{1}$ with $r \in S$

$$
E(f)=E(r) \cdot \sum_{n=0}^{\infty}\left(f_{1}\right)^{n} / n!
$$

Examples

Examples:

© $\left(\mathbb{R}, e^{x}\right) ;\left(\mathbb{C}, e^{x}\right)$;
(2) (R, E) where R is any ring and $E(x)=1$ for all $x \in R$.
(3) $(S[t], E)$ where S is E-field of characteristic 0 and $S[t]$ the ring of formal power series in t over S. Let $f \in S[t]$, where $f=r+f_{1}$ with $r \in S$

$$
E(f)=E(r) \cdot \sum_{n=0}^{\infty}\left(f_{1}\right)^{n} / n!
$$

Examples

Examples:

(1) $\left(\mathbb{R}, e^{x}\right) ;\left(\mathbb{C}, e^{x}\right)$;
(2) (R, E) where R is any ring and $E(x)=1$ for all $x \in R$.
(3) $(S[t], E)$ where S is E-field of characteristic 0 and $S[t]$ the ring of formal power series in t over S. Let $f \in S[t]$, where $f=r+f_{1}$ with $r \in S$

$$
E(f)=E(r) \cdot \sum_{n=0}\left(f_{1}\right)^{n} / n!
$$

Examples

Examples:

(1) $\left(\mathbb{R}, e^{x}\right) ;\left(\mathbb{C}, e^{x}\right)$;
(2) (R, E) where R is any ring and $E(x)=1$ for all $x \in R$.
(3) $(S[t], E)$ where S is E-field of characteristic 0 and $S[t]$ the ring of formal power series in t over S. Let $f \in S[t]$, where $f=r+f_{1}$ with $r \in S$

$$
E(f)=E(r) \cdot \sum_{n=0}\left(f_{1}\right)^{n} / n!
$$

Examples

Examples:

(1) $\left(\mathbb{R}, e^{x}\right) ;\left(\mathbb{C}, e^{x}\right)$;
(2) (R, E) where R is any ring and $E(x)=1$ for all $x \in R$.
(3) $(S[t], E)$ where S is E-field of characteristic 0 and $S[t]$ the ring of formal power series in t over S. Let $f \in S[t]$, where $f=r+f_{1}$ with $r \in S$

$$
E(f)=E(r) \cdot \sum_{n=0}^{\infty}\left(f_{1}\right)^{n} / n!
$$

Exponential polynomial ring

Construction

Let (K, E) be an E-field, the ring of E-polynomials in the indeterminates $\bar{X}=X_{1}, \ldots, X_{n}$, denoted by $K[\bar{X}]^{E}$, is an E-ring constructed by recursion:

$$
\left(R_{k},+, \cdot\right)_{k \geq-1}, \quad\left(B_{k},+\right)_{k \geq 0} \quad \text { and } \quad\left(E_{k}\right)_{k \geq-1}
$$

rings
 ab groups

Step 0:
$R_{-1}=K$
$R_{0}=(K[\bar{X}],+, \cdot), B_{0}=(\bar{X}), R_{0}=R_{-1} \oplus B_{0} E_{-1}: R_{-1} \longrightarrow R_{0}$

Exponential polynomial ring

Construction

Let (K, E) be an E-field, the ring of E-polynomials in the indeterminates $\bar{X}=X_{1}, \ldots, X_{n}$, denoted by $K[\bar{X}]^{E}$, is an E-ring constructed by recursion:
$\left(R_{k},+, \cdot\right)_{k \geq-1}, \quad\left(B_{k},+\right)_{k \geq 0} \quad$ and $\quad\left(E_{k}\right)_{k \geq-1}$

Step 0:
$R_{-1}=K$
$R_{0}=(K[\bar{X}],+, \cdot), B_{0}=(\bar{X}), R_{0}=R_{-1} \oplus B_{0} E_{-1}: R_{-1} \longrightarrow R_{0}$

Exponential polynomial ring

Construction

Let (K, E) be an E-field, the ring of E-polynomials in the indeterminates $\bar{X}=X_{1}, \ldots, X_{n}$, denoted by $K[\bar{X}]^{E}$, is an E-ring constructed by recursion:

Step 0:

$R_{-1}=K$
$R_{0}=(K[\bar{X}],+, \cdot), B_{0}=(\bar{X}), R_{0}=R_{-1} \oplus B_{0} E_{-1}: R_{-1} \longrightarrow R_{0}$

Exponential polynomial ring

Construction

Let (K, E) be an E-field, the ring of E-polynomials in the indeterminates $\bar{X}=X_{1}, \ldots, X_{n}$, denoted by $K[\bar{X}]^{E}$, is an E-ring constructed by recursion:

$$
\left(R_{k},+, \cdot\right)_{k \geq-1}, \quad\left(B_{k},+\right)_{k \geq 0} \quad \text { and } \quad\left(E_{k}\right)_{k \geq-1}
$$ rings

Step 0:

$R_{-1}=K$
$R_{0}=(K[\bar{X}],+, \cdot), B_{0}=(\bar{X}), R_{0}=R_{-1} \oplus B_{0} E_{-1}: R_{-1} \longrightarrow R_{0}$

Exponential polynomial ring

Construction

Let (K, E) be an E-field, the ring of E-polynomials in the indeterminates $\bar{X}=X_{1}, \ldots, X_{n}$, denoted by $K[\bar{X}]^{E}$, is an E-ring constructed by recursion:

$$
\begin{array}{cl}
\left(R_{k},+, \cdot\right)_{k \geq-1}, & \left(B_{k},+\right)_{k \geq 0} \quad \text { and } \quad\left(E_{k}\right)_{k \geq-1} \\
\text { rings } & \text { ab groups }
\end{array}
$$

Step 0:
$R_{-1}=K$
$R_{0}=(K[\bar{X}],+, \cdot), B_{0}=(\bar{X}), R_{0}=R_{-1} \oplus B_{0} E_{-1}: R_{-1} \longrightarrow R_{0}$

Exponential polynomial ring

Construction

Let (K, E) be an E-field, the ring of E-polynomials in the indeterminates $\bar{X}=X_{1}, \ldots, X_{n}$, denoted by $K[\bar{X}]^{E}$, is an E-ring constructed by recursion:

$$
\begin{array}{ccc}
\left(R_{k},+, \cdot\right)_{k \geq-1}, & \left(B_{k},+\right)_{k \geq 0} \quad \text { and } & \left(E_{k}\right)_{k \geq-1} \\
\text { rings } & \text { ab groups } & \\
E \text {-morphisms }
\end{array}
$$

Step 0:
$R_{-1}=K$
$R_{0}=(K[\bar{X}],+, \cdot), B_{0}=(\bar{X}), R_{0}=R_{-1} \oplus B_{0} E_{-1}: R_{-1} \longrightarrow R_{0}$

Exponential polynomial ring

Construction

Let (K, E) be an E-field, the ring of E-polynomials in the indeterminates $\bar{X}=X_{1}, \ldots, X_{n}$, denoted by $K[\bar{X}]^{E}$, is an E-ring constructed by recursion:

$$
\begin{array}{ccc}
\left(R_{k},+, \cdot\right)_{k \geq-1}, & \left(B_{k},+\right)_{k \geq 0} \quad \text { and } & \left(E_{k}\right)_{k \geq-1} \\
\text { rings } & \text { ab groups } & \\
\text { E-morphisms }
\end{array}
$$

Step 0:

$R_{-1}=K$
$R_{0}=(K[\bar{X}],+, \cdot), B_{0}=(\bar{X}), R_{0}=R_{-1} \oplus B_{0} E_{-1}: R_{-1} \longrightarrow R_{0}$

Exponential polynomial ring

Construction

Let (K, E) be an E-field, the ring of E-polynomials in the indeterminates $\bar{X}=X_{1}, \ldots, X_{n}$, denoted by $K[\bar{X}]^{E}$, is an E-ring constructed by recursion:

$$
\begin{array}{ccc}
\left(R_{k},+, \cdot\right)_{k \geq-1}, & \left(B_{k},+\right)_{k \geq 0} \quad \text { and } & \left(E_{k}\right)_{k \geq-1} \\
\text { rings } & \text { ab groups } & \\
E \text {-morphisms }
\end{array}
$$

Step 0:

$R_{-1}=K$
$R_{0}=(K[\bar{X}],+, \cdot), B_{0}=(\bar{X}), R_{0}=R_{-1} \oplus B_{0} E_{-1}: R_{-1} \longrightarrow R_{0}$

Exponential polynomial ring

Construction

Let (K, E) be an E-field, the ring of E-polynomials in the indeterminates $\bar{X}=X_{1}, \ldots, X_{n}$, denoted by $K[\bar{X}]^{E}$, is an E-ring constructed by recursion:

$$
\begin{array}{ccc}
\left(R_{k},+, \cdot\right)_{k \geq-1}, & \left(B_{k},+\right)_{k \geq 0} \quad \text { and } & \left(E_{k}\right)_{k \geq-1} \\
\text { rings } & \text { ab groups } & \\
E \text {-morphisms }
\end{array}
$$

Step 0:

$R_{-1}=K$
$R_{0}=(K[\bar{X}],+, \cdot), B_{0}=(\bar{X}), R_{0}=R_{-1} \oplus B_{0} E_{-1}: R_{-1} \longrightarrow R_{0}$

Exponential polynomial ring

Construction

Let (K, E) be an E-field, the ring of E-polynomials in the indeterminates $\bar{X}=X_{1}, \ldots, X_{n}$, denoted by $K[\bar{X}]^{E}$, is an E-ring constructed by recursion:

$$
\left(R_{k},+, \cdot\right)_{k \geq-1}, \quad\left(B_{k},+\right)_{k \geq 0} \quad \text { and } \quad\left(E_{k}\right)_{k \geq-1}
$$

rings ab groups E-morphisms

Step 0:

$R_{-1}=K$
$R_{0}=(K[\bar{X}],+, \cdot), B_{0}=(\bar{X}), R_{0}=R_{-1} \oplus B_{0} E_{-1}: R_{-1} \longrightarrow R_{0}$

Exponential polynomial ring

Construction

Let (K, E) be an E-field, the ring of E-polynomials in the indeterminates $\bar{X}=X_{1}, \ldots, X_{n}$, denoted by $K[\bar{X}]^{E}$, is an E-ring constructed by recursion:

$$
\left(R_{k},+, \cdot\right)_{k \geq-1}, \quad\left(B_{k},+\right)_{k \geq 0} \quad \text { and } \quad\left(E_{k}\right)_{k \geq-1}
$$

rings ab groups E-morphisms

Step 0:

$R_{-1}=K$
$R_{0}=(K[\bar{X}],+, \cdot), B_{0}=(\bar{X}), R_{0}=R_{-1} \oplus B_{0}$

Exponential polynomial ring

Construction

Let (K, E) be an E-field, the ring of E-polynomials in the indeterminates $\bar{X}=X_{1}, \ldots, X_{n}$, denoted by $K[\bar{X}]^{E}$, is an E-ring constructed by recursion:

$$
\left(R_{k},+, \cdot\right)_{k \geq-1}, \quad\left(B_{k},+\right)_{k \geq 0} \quad \text { and } \quad\left(E_{k}\right)_{k \geq-1}
$$

rings ab groups E-morphisms

Step 0:

$R_{-1}=K$
$R_{0}=(K[\bar{X}],+, \cdot), B_{0}=(\bar{X}), R_{0}=R_{-1} \oplus B_{0} E_{-1}: R_{-1} \longrightarrow R_{0}$

Construction

Inductive step:

Suppose $k \geq 0$ and R_{k-1}, R_{k}, B_{k} and E_{k-1} have been defined in
such a way that:

$$
R_{k}=R_{k-1} \oplus B_{k}, E_{k-1}:\left(R_{k-1},+\right) \rightarrow\left(\mathcal{U}\left(R_{k}\right), \cdot\right)
$$

Let

$$
t:\left(B_{k},+\right) \rightarrow\left(t^{B_{k}}, \cdot\right)
$$

an isomorphism. Define

So

$$
R_{k} \text { is a subring of } R_{k+1}
$$

Construction

Inductive step:

Suppose $k \geq 0$ and R_{k-1}, R_{k}, B_{k} and E_{k-1} have been defined in such a way that:

$$
R_{k}=R_{k-1} \oplus B_{k}, E_{k-1}:\left(R_{k-1},+\right) \rightarrow\left(\mathcal{U}\left(R_{k}\right), \cdot\right)
$$

an isomorphism. Define

$$
R_{k} \text { is a subring of } R_{k+1}
$$

Construction

Inductive step:

Suppose $k \geq 0$ and R_{k-1}, R_{k}, B_{k} and E_{k-1} have been defined in such a way that:

$$
R_{k}=R_{k-1} \oplus B_{k}, E_{k-1}:\left(R_{k-1},+\right) \rightarrow\left(\mathcal{U}\left(R_{k}\right), \cdot\right)
$$

an isomorphism. Define

R_{k} is a subring of R_{k+1}

Construction

Inductive step:

Suppose $k \geq 0$ and R_{k-1}, R_{k}, B_{k} and E_{k-1} have been defined in such a way that:

$$
R_{k}=R_{k-1} \oplus B_{k}, E_{k-1}:\left(R_{k-1},+\right) \rightarrow\left(\mathcal{U}\left(R_{k}\right), \cdot\right)
$$

Let

$$
t:\left(B_{k},+\right) \rightarrow\left(t^{B_{k}}, \cdot\right)
$$

an isomorphism. \qquad
R_{k} is a subring of R_{k+1}

Construction

Inductive step:

Suppose $k \geq 0$ and R_{k-1}, R_{k}, B_{k} and E_{k-1} have been defined in such a way that:

$$
R_{k}=R_{k-1} \oplus B_{k}, E_{k-1}:\left(R_{k-1},+\right) \rightarrow\left(\mathcal{U}\left(R_{k}\right), \cdot\right)
$$

Let

$$
t:\left(B_{k},+\right) \rightarrow\left(t^{B_{k}}, \cdot\right)
$$

an isomorphism. Define

$$
R_{k+1}=R_{k}\left[t^{B_{k}}\right] \text { (group ring). }
$$

R_{k} is a subring of R_{k+1}

Construction

Inductive step:

Suppose $k \geq 0$ and R_{k-1}, R_{k}, B_{k} and E_{k-1} have been defined in such a way that:

$$
R_{k}=R_{k-1} \oplus B_{k}, E_{k-1}:\left(R_{k-1},+\right) \rightarrow\left(\mathcal{U}\left(R_{k}\right), \cdot\right)
$$

Let

$$
t:\left(B_{k},+\right) \rightarrow\left(t^{B_{k}}, \cdot\right)
$$

an isomorphism. Define

$$
R_{k+1}=R_{k}\left[t^{B_{k}}\right] \text { (group ring). }
$$

So

$$
R_{k} \text { is a subring of } R_{k+1}
$$

Construction

Inductive step:

Suppose $k \geq 0$ and R_{k-1}, R_{k}, B_{k} and E_{k-1} have been defined in such a way that:

$$
R_{k}=R_{k-1} \oplus B_{k}, E_{k-1}:\left(R_{k-1},+\right) \rightarrow\left(\mathcal{U}\left(R_{k}\right), \cdot\right)
$$

Let

$$
t:\left(B_{k},+\right) \rightarrow\left(t^{B_{k}}, \cdot\right)
$$

an isomorphism. Define

$$
R_{k+1}=R_{k}\left[t^{B_{k}}\right] \text { (group ring). }
$$

So

$$
R_{k} \text { is a subring of } R_{k+1}
$$

and

$$
R_{k+1}=R_{k} \oplus B_{k+1}
$$

Construction

Define

$$
E_{k}:\left(R_{k},+\right) \rightarrow\left(\mathcal{U}\left(R_{k+1}\right), \cdot\right) \text { s.t. }
$$

$$
E_{k}(x)=E_{k-1}(r) \cdot t^{b}, \text { for } x=r+b, r \in R_{k-1} \text { and } b \in B_{k} \text {. }
$$

$$
R_{0} \subset R_{1} \subset R_{2} \subset \cdots \subset R_{k} \subset \cdots
$$

Then the E-polynomial ring is:

$$
K[X]^{E}=\lim _{k} R_{k}=\bigcup_{k=0} R_{k}=K[X]\left[t^{\left.B_{0} \oplus B_{1} \oplus \ldots \oplus B_{k} \cdots\right]}\right.
$$

and the E-ring morphism on $K[\bar{X}]^{E}$ is the following:

$$
E(x)=E_{k}(x) \text { if } x \in R_{k} . k \in \mathbb{N}
$$

Construction

Define

$$
E_{k}:\left(R_{k},+\right) \rightarrow\left(\mathcal{U}\left(R_{k+1}\right), \cdot\right) \text { s.t. }
$$

$E_{k}(x)=E_{k-1}(r) \cdot t^{b}$, for $x=r+b, r \in R_{k-1}$ and $b \in B_{k}$

Then the E-polynomial ring is:

and the E-ring morphism on $K[\bar{X}]^{E}$ is the following:

Construction

Define

$$
E_{k}:\left(R_{k},+\right) \rightarrow\left(\mathcal{U}\left(R_{k+1}\right), \cdot\right) \text { s.t. }
$$

$E_{k}(x)=E_{k-1}(r) \cdot t^{b}$. for $x=r+b, r \in R_{k-1}$ and $b \in B_{k}$.

Then the E-polynomial ring is:

and the E-ring morphism on $K[\bar{X}]^{E}$ is the following:

Construction

Define

$$
E_{k}:\left(R_{k},+\right) \rightarrow\left(\mathcal{U}\left(R_{k+1}\right), \cdot\right) \text { s.t. }
$$

$$
E_{k}(x)=E_{k-1}(r) \cdot t^{b}, \text { for } x=r+b, r \in R_{k-1} \text { and } b \in B_{k}
$$

Then the E-polynomial ring is:

and the E-ring morphism on $K[\bar{X}]^{E}$ is the following:

Construction

Define

$$
E_{k}:\left(R_{k},+\right) \rightarrow\left(\mathcal{U}\left(R_{k+1}\right), \cdot\right) \text { s.t. }
$$

$$
E_{k}(x)=E_{k-1}(r) \cdot t^{b}, \text { for } x=r+b, r \in R_{k-1} \text { and } b \in B_{k} .
$$

$$
R_{0} \subset R_{1} \subset R_{2} \subset \cdots \subset R_{k} \subset \cdots
$$

Then the E-polynomial ring is:
and the E-ring morphism on $K[\bar{X}]^{E}$ is the following:

Construction

Define

$$
E_{k}:\left(R_{k},+\right) \rightarrow\left(\mathcal{U}\left(R_{k+1}\right), \cdot\right) \text { s.t. }
$$

$$
\begin{gathered}
E_{k}(x)=E_{k-1}(r) \cdot t^{b}, \text { for } x=r+b, r \in R_{k-1} \text { and } b \in B_{k} . \\
R_{0} \subset R_{1} \subset R_{2} \subset \cdots \subset R_{k} \subset \cdots
\end{gathered}
$$

Then the E-polynomial ring is:
and the E-ring morphism on $K[\bar{X}]^{E}$ is the following:

Construction

Define

$$
E_{k}:\left(R_{k},+\right) \rightarrow\left(\mathcal{U}\left(R_{k+1}\right), \cdot\right) \text { s.t. }
$$

$$
E_{k}(x)=E_{k-1}(r) \cdot t^{b}, \text { for } x=r+b, r \in R_{k-1} \text { and } b \in B_{k} .
$$

$$
R_{0} \subset R_{1} \subset R_{2} \subset \cdots \subset R_{k} \subset \cdots
$$

Then the E-polynomial ring is:

$$
K[\bar{X}]^{E}=\lim _{k} R_{k}=\bigcup_{k=0}^{\infty} R_{k}=K[\bar{X}]\left[t^{B_{0} \oplus B_{1} \oplus \ldots \oplus B_{k} \cdots}\right]
$$

and the E-ring morphism on $K[\bar{X}]^{E}$ is the following:

Construction

Define

$$
E_{k}:\left(R_{k},+\right) \rightarrow\left(\mathcal{U}\left(R_{k+1}\right), \cdot\right) \text { s.t. }
$$

$$
E_{k}(x)=E_{k-1}(r) \cdot t^{b}, \text { for } x=r+b, r \in R_{k-1} \text { and } b \in B_{k} .
$$

$$
R_{0} \subset R_{1} \subset R_{2} \subset \cdots \subset R_{k} \subset \cdots
$$

Then the E-polynomial ring is:

$$
K[\bar{X}]^{E}=\lim _{k} R_{k}=\bigcup_{k=0}^{\infty} R_{k}=K[\bar{X}]\left[t^{B_{0} \oplus B_{1} \oplus \ldots \oplus B_{k} \cdots}\right]
$$

and the E-ring morphism on $K[\bar{X}]^{E}$ is the following:

$$
E(x)=E_{k}(x) \text { if } x \in R_{k}, \quad k \in \mathbb{N}
$$

Invertible elements

Theorem (Folklore): Let (R, E) be an exponential domain. Then
$R[\bar{X}] E$ is an integral domain whose units are $u \cdot \Sigma(f)$, where u is
invertible in R and $f \in R[\bar{X}]^{E}$.

Invertible elements

Theorem (Folklore): Let (R, E) be an exponential domain. Then $R[\bar{X}]^{E}$ is an integral domain whose units are $u \cdot E(f)$, where u is invertible in R and $f \in R[\bar{X}]^{E}$.

Factorization theorem

Let K be an ACF, where $\operatorname{char}(K)=0$, if $f \in K\left[X_{1}, \ldots, X_{n}\right]$ is an irreducible polynomial over K, it can happen that for some $\mu_{1}, \ldots, \mu_{n} \in \mathbb{N}_{+}, f\left(X_{1}^{\mu_{1}}, \ldots, X_{n}^{\mu_{n}}\right)$ becomes reducible.
Ritt (1927) and Gourin (1930) studied factorizations of

$$
\beta_{1} e^{\alpha_{1} x}+\ldots+\beta_{k} e^{\alpha_{k} x}
$$

Definition: A polynomial $f(\bar{X})$ is power irreducible (over K) if for each $\bar{\mu} \in \mathbb{N}^{n}, f\left(\bar{X}^{\bar{\mu}}\right)$ is irreducible.
monomial: $X_{1}^{m_{1}} \cdot \ldots \cdot X_{n}^{m_{n}}$, where $m_{1}, \ldots, m_{n} \in \mathbb{Z}$.

Definition: A polynomial $f(\bar{X})$ is effectively 1 -variable or simple if $f=\tau_{1} \cdot g\left(\tau_{2}\right)$, where τ_{1}, τ_{2} are monomials (possibly with negative exponents), and g is a polynomial with constant term different from zero.

Let K be an ACF, where $\operatorname{char}(K)=0$, if $f \in K\left[X_{1}, \ldots, X_{n}\right]$ is an irreducible polynomial over K, it can happen that for some $\mu_{1}, \ldots, \mu_{n} \in \mathbb{N}_{+}, f\left(X_{1}^{\mu_{1}}, \ldots, X_{n}^{\mu_{n}}\right)$ becomes reducible.

Ritt (1927) and Gourin (1930) studied factorizations of

Definition: A polynomial $f(\bar{X})$ is power irreducible (over K) if for each $\bar{\mu} \in \mathbb{N}^{n}, f\left(\bar{X}^{\bar{\mu}}\right)$ is irreducible.

Definition: A polynomial $f(\bar{X})$ is effectively 1 -variable or simple if $f=\tau_{1} \cdot g\left(\tau_{2}\right)$, where τ_{1}, τ_{2} are monomials (possibly with negative exponents), and g is a polynomial with constant term different from zero.

Let K be an ACF, where $\operatorname{char}(K)=0$, if $f \in K\left[X_{1}, \ldots, X_{n}\right]$ is an irreducible polynomial over K, it can happen that for some $\mu_{1}, \ldots, \mu_{n} \in \mathbb{N}_{+}, f\left(X_{1}^{\mu_{1}}, \ldots, X_{n}^{\mu_{n}}\right)$ becomes reducible.
Ritt (1927) and Gourin (1930) studied factorizations of

$$
\beta_{1} e^{\alpha_{1} x}+\ldots+\beta_{k} e^{\alpha_{k} x}
$$

Definition: A polynomial $f(\bar{X})$ is power irreducible (over K) if for each $\bar{\mu} \in \mathbb{N}^{n}, f\left(\bar{X}^{\bar{\mu}}\right)$ is irreducible.

Definition: A polynomial $f(\bar{X})$ is effectively 1-variable or simple if $f=\tau_{1} \cdot g\left(\tau_{2}\right)$, where τ_{1}, τ_{2} are monomials (possibly with negative exponents), and g is a polynomial with constant term different from zero.

Let K be an ACF, where $\operatorname{char}(K)=0$, if $f \in K\left[X_{1}, \ldots, X_{n}\right]$ is an irreducible polynomial over K, it can happen that for some $\mu_{1}, \ldots, \mu_{n} \in \mathbb{N}_{+}, f\left(X_{1}^{\mu_{1}}, \ldots, X_{n}^{\mu_{n}}\right)$ becomes reducible.
Ritt (1927) and Gourin (1930) studied factorizations of

$$
\beta_{1} e^{\alpha_{1} x}+\ldots+\beta_{k} e^{\alpha_{k} x}
$$

Definition: A polynomial $f(\bar{X})$ is power irreducible (over K) if for each $\bar{\mu} \in \mathbb{N}^{n}, f\left(\bar{X}^{\bar{\mu}}\right)$ is irreducible.

Let K be an ACF, where $\operatorname{char}(K)=0$, if $f \in K\left[X_{1}, \ldots, X_{n}\right]$ is an irreducible polynomial over K, it can happen that for some $\mu_{1}, \ldots, \mu_{n} \in \mathbb{N}_{+}, f\left(X_{1}^{\mu_{1}}, \ldots, X_{n}^{\mu_{n}}\right)$ becomes reducible.
Ritt (1927) and Gourin (1930) studied factorizations of

$$
\beta_{1} e^{\alpha_{1} x}+\ldots+\beta_{k} e^{\alpha_{k} x}
$$

Definition: A polynomial $f(\bar{X})$ is power irreducible (over K) if for each $\bar{\mu} \in \mathbb{N}^{n}, f\left(\bar{X}^{\bar{\mu}}\right)$ is irreducible.
monomial: $X_{1}^{m_{1}} \cdot \ldots \cdot X_{n}^{m_{n}}$, where $m_{1}, \ldots, m_{n} \in \mathbb{Z}$.
Definition: A polynomial $f(\bar{X})$ is effectively 1-variable or simple if $f=\tau_{1} \cdot g\left(\tau_{2}\right)$, where τ_{1}, τ_{2} are monomials (possibly with negative exponents), and g is a polynomial with constant term different from zero.

Let K be an ACF, where $\operatorname{char}(K)=0$, if $f \in K\left[X_{1}, \ldots, X_{n}\right]$ is an irreducible polynomial over K, it can happen that for some $\mu_{1}, \ldots, \mu_{n} \in \mathbb{N}_{+}, f\left(X_{1}^{\mu_{1}}, \ldots, X_{n}^{\mu_{n}}\right)$ becomes reducible.
Ritt (1927) and Gourin (1930) studied factorizations of

$$
\beta_{1} e^{\alpha_{1} x}+\ldots+\beta_{k} e^{\alpha_{k} x}
$$

Definition: A polynomial $f(\bar{X})$ is power irreducible (over K) if for each $\bar{\mu} \in \mathbb{N}^{n}, f\left(\bar{X}^{\bar{\mu}}\right)$ is irreducible.
monomial: $X_{1}^{m_{1}} \cdot \ldots \cdot X_{n}^{m_{n}}$, where $m_{1}, \ldots, m_{n} \in \mathbb{Z}$.
Definition: A polynomial $f(\bar{X})$ is effectively 1 -variable or simple if $f=\tau_{1} \cdot g\left(\tau_{2}\right)$, where τ_{1}, τ_{2} are monomials (possibly with negative exponents), and g is a polynomial with constant term different from zero.

Factorization theorem

van der Poorten (1995) gives a uniform bound for the number of irreducible factors of

$$
f\left(X_{1}^{\mu_{1}}, \ldots, X_{n}^{\mu_{n}}\right)
$$

for $f\left(X_{1}, \ldots, X_{n}\right)$ not effectively 1 -variable, and arbitrary $\mu_{1}, \ldots, \mu_{n} \in \mathbb{N}_{+}$. The bound depends only on

$$
M=\max \left\{d_{X_{1}}, \ldots, d_{X_{n}}\right\}
$$

Factorization theorem

van der Poorten (1995) gives a uniform bound for the number of irreducible factors of

$$
f\left(X_{1}^{\mu_{1}}, \ldots, X_{n}^{\mu_{n}}\right)
$$

for $f\left(X_{1}, \ldots, X_{n}\right)$ not effectively 1 -variable, and arbitrary $\mu_{1}, \ldots, \mu_{n} \in \mathbb{N}_{+}$. The bound depends only on

$$
M=\max \left\{d_{X_{1}}, \ldots, d_{X_{n}}\right\}
$$

van der Poorten (1995) gives a uniform bound for the number of irreducible factors of

$$
f\left(X_{1}^{\mu_{1}}, \ldots, X_{n}^{\mu_{n}}\right)
$$

for $f\left(X_{1}, \ldots, X_{n}\right)$ not effectively 1 -variable, and arbitrary $\mu_{1}, \ldots, \mu_{n} \in \mathbb{N}_{+}$.
van der Poorten (1995) gives a uniform bound for the number of irreducible factors of

$$
f\left(X_{1}^{\mu_{1}}, \ldots, X_{n}^{\mu_{n}}\right)
$$

for $f\left(X_{1}, \ldots, X_{n}\right)$ not effectively 1 -variable, and arbitrary $\mu_{1}, \ldots, \mu_{n} \in \mathbb{N}_{+}$. The bound depends only on

$$
M=\max \left\{d_{X_{1}}, \ldots, d_{X_{n}}\right\}
$$

We denote by $U[G]=K[\bar{X}]\left[t^{\left.B_{0} \oplus \ldots \oplus B_{n} \cdots\right]}\right.$. Let $f(\bar{X}) \in U[G]$, so

$$
f(\bar{X})=\sum_{m=1}^{h} a_{m} t^{b_{m}}
$$

where $a_{m} \in U$ and $b_{m} \in G$
Let Γ be the abelian additive group generated by b_{1}, \ldots, b_{h}.
$\operatorname{supp}(f)=\mathbb{Q}$-vector space generated by Γ.
Let $\left\{\beta_{1}, \ldots, \beta_{l}\right\}$ a \mathbb{Z}-base of Γ.
We can consider f as polynomial in $t^{\beta_{1}} \ldots \ldots t^{\beta_{1}}$, with coefficients in $U=K[\bar{X}]$. We use formally $\omega_{1}, \ldots, \omega_{1}$ for $t^{\beta_{1}}, \ldots, t^{\beta_{1}}$, and we consider f as an element of $U\left[\omega_{1}, \ldots, \omega_{1}\right]$.

We denote by $U[G]=K[\bar{X}]\left[t^{B_{0} \oplus \ldots \oplus B_{n} \ldots}\right]$. Let $f(\bar{X}) \in U[G]$, so

where $a_{m} \in U$ and $b_{m} \in G$
Let Γ be the abelian additive group generated by b_{1}, \ldots, b_{h}.
$\operatorname{supp}(f)=\mathbb{Q}$-vector space generated by Γ.
Let $\left\{\beta_{1}, \ldots, \beta_{l}\right\}$ a \mathbb{Z}-base of Γ.
We can consider f as polynomial in $t^{\beta_{1}} \ldots \ldots t^{\beta_{1}}$, with coefficients in $U=K[\bar{X}]$. We use formally $\omega_{1}, \ldots, \omega_{\text {}}$ for $t^{\beta_{1}}, \ldots, t^{\beta_{1}}$, and we consider f as an element of $U\left[\omega_{1}, \ldots, \omega_{l}\right]$.

The basic idea

We denote by $U[G]=K[\bar{X}]\left[t^{\left.B_{0} \oplus \ldots \oplus B_{n} \ldots\right]}\right.$. Let $f(\bar{X}) \in U[G]$, so

where $a_{m} \in U$ and $b_{m} \in G$
Let Γ be the abelian additive group generated by b_{1}, \ldots, b_{h}.
$\operatorname{supp}(f)=\mathbb{Q}$-vector space generated by Γ.
Let $\left\{\beta_{1}, \ldots, \beta_{l}\right\}$ a \mathbb{Z}-base of Γ.
We can consider f as polynomial in $t^{\beta_{1}} \ldots . t^{\beta_{1}}$, with coefficients
in $U=K[\bar{X}]$. We use formally $\omega_{1}, \ldots, \omega$, for $t^{\beta_{1}}, \ldots, t^{\beta_{1}}$, and we
consider f as an element of $U\left[\omega_{1}, \ldots, \omega_{1}\right]$.

The basic idea

We denote by $U[G]=K[\bar{X}]\left[t^{\left.B_{0} \oplus \ldots \oplus B_{n} \ldots\right]}\right.$. Let $f(\bar{X}) \in U[G]$, so

$$
f(\bar{X})=\sum_{m=1}^{h} a_{m} t^{b_{m}}
$$

where $a_{m} \in U$ and $b_{m} \in G$
Let Γ be the abelian additive group generated by b_{1}, \ldots, b_{h}.
$\operatorname{supp}(f)=\mathbb{Q}$-vector space generated by Γ.
Let $\left\{\beta_{1}, \ldots, \beta_{l}\right\}$ a \mathbb{Z}-base of Γ.
We can consider f as polynomial in $t^{\beta_{1}}, \ldots, t^{\beta_{1}}$, with coefficients
in $U=K[\bar{X}]$. We use formally $\omega_{1}, \ldots, \omega_{l}$ for $t^{\beta_{1}}, \ldots, t^{\beta_{l}}$, and we
consider f as an element of $U\left[\omega_{1}, \ldots, \omega_{l}\right]$.

We denote by $U[G]=K[\bar{X}]\left[t^{\left.B_{0} \oplus \ldots \oplus B_{n} \ldots\right]}\right.$. Let $f(\bar{X}) \in U[G]$, so

$$
f(\bar{X})=\sum_{m=1}^{h} a_{m} t^{b_{m}}
$$

where $a_{m} \in U$ and $b_{m} \in G$
Let Γ be the abelian additive group generated by b_{1}, \ldots, b_{h}.
$\operatorname{supp}(f)=\mathbb{Q}$-vector space generated by Γ.
Let $\left\{\beta_{1}, \ldots, \beta_{l}\right\}$ a \mathbb{Z}-base of Γ.
We can consider f as polynomial in $t^{\beta_{1}} \ldots, t^{\beta_{1}}$, with coefficients
in $U=K[\bar{X}]$. We use formally $\omega_{1}, \ldots, \omega_{1}$ for $t^{\beta_{1}}, \ldots, t^{\beta_{1}}$, and we
consider f as an element of $U\left[\omega_{1}, \ldots, \omega_{l}\right]$.

We denote by $U[G]=K[\bar{X}]\left[t^{\left.B_{0} \oplus \ldots \oplus B_{n} \cdots\right]}\right.$. Let $f(\bar{X}) \in U[G]$, so

$$
f(\bar{X})=\sum_{m=1}^{h} a_{m} t^{b_{m}}
$$

where $a_{m} \in U$ and $b_{m} \in G$
Let Γ be the abelian additive group generated by b_{1}, \ldots, b_{h}. $\operatorname{supp}(f)=\mathbb{Q}$-vector space generated by Γ.
Let $\left\{\beta_{1}, \ldots, \beta_{l}\right\}$ a \mathbb{Z}-base of Γ.
We can consider f as polynomial in $t^{\beta_{1}}, \ldots, t^{\beta_{l}}$, with coefficients
in $U=K[\bar{X}]$. We use formally $\omega_{1}, \ldots, \omega_{l}$ for $t^{\beta_{1}}, \ldots, t^{\beta_{1}}$, and we
consider f as an element of $U\left[\omega_{1}, \ldots, \omega_{i}\right]$.

We denote by $U[G]=K[\bar{X}]\left[t^{\left.B_{0} \oplus \ldots \oplus B_{n} \ldots\right]}\right.$. Let $f(\bar{X}) \in U[G]$, so

$$
f(\bar{X})=\sum_{m=1}^{h} a_{m} t^{b_{m}}
$$

where $a_{m} \in U$ and $b_{m} \in G$
Let Γ be the abelian additive group generated by b_{1}, \ldots, b_{h}. $\operatorname{supp}(f)=\mathbb{Q}$-vector space generated by Γ.
Let $\left\{\beta_{1}, \ldots, \beta_{l}\right\}$ a \mathbb{Z}-base of Γ.
We can consider f as polynomial in $t^{\beta_{1}}, \ldots, t^{\beta_{l}}$, with coefficients in $U=K[\bar{X}]$.

We denote by $U[G]=K[\bar{X}]\left[t^{B_{0} \oplus \ldots \oplus B_{n} \ldots}\right]$. Let $f(\bar{X}) \in U[G]$, so

$$
f(\bar{X})=\sum_{m=1}^{h} a_{m} t^{b_{m}}
$$

where $a_{m} \in U$ and $b_{m} \in G$
Let Γ be the abelian additive group generated by b_{1}, \ldots, b_{h}. $\operatorname{supp}(f)=\mathbb{Q}$-vector space generated by Γ. Let $\left\{\beta_{1}, \ldots, \beta_{l}\right\}$ a \mathbb{Z}-base of Γ.
We can consider f as polynomial in $t^{\beta_{1}}, \ldots, t^{\beta_{1}}$, with coefficients in $U=K[\bar{X}]$. We use formally $\omega_{1}, \ldots, \omega_{l}$ for $t^{\beta_{1}}, \ldots, t^{\beta_{l}}$, and we consider f as an element of $U\left[\omega_{1}, \ldots, \omega_{l}\right]$.

Almost Unique Factorization Theorem

Theorem (DMT):
Let $f(\bar{X}) \in K[\bar{X}]^{E}$, where (K, E) is an algebraically closed E-field of char 0 and $f \neq 0$. Then f factors, uniquely up to units and associates, as finite product of irreducibles of $K[\bar{X}]$, a finite product of irreducible polynomials F_{i} in $K[\bar{X}]^{E}$ with support of dimension bigger than 1 , and a finite product of polynomials G_{j} where $\operatorname{supp}\left(G_{j 1}\right) \neq \operatorname{supp}\left(G_{j 2}\right)$, for $j_{1} \neq j_{2}$ and whose supports are of dimension 1.

Remark:

(1) If a nolynomial f factors as $f_{1} \cdot f_{2}$ then $\operatorname{supp}\left(f_{i}\right) \subseteq \operatorname{supp}(f)$, where $i=1,2$.
(2) If a polynomial f divides a polynomial with support of dimension 1 then the dimension of support of f is 1 .

Almost Unique Factorization Theorem

Theorem (DMT):
Let $f(\bar{X}) \in K[\bar{X}]^{E}$, where (K, E) is an algebraically closed E-field of char 0 and $f \neq 0$. Then f factors, uniquely up to units and associates, as finite product of irreducibles of $K[\bar{X}]$, a finite product of irreducible polynomials F_{i} in $K[\bar{X}]^{E}$ with support of dimension bigger than 1, and a finite product of polynomials G_{j} where $\operatorname{supp}\left(G_{j 1}\right) \neq \operatorname{supp}\left(G_{j 2}\right)$, for $j_{1} \neq j_{2}$ and whose supports are of dimension 1 .
(1) If a polynomial f factors as $f_{1} \cdot f_{2}$ then $\operatorname{supp}\left(f_{i}\right) \subseteq \operatorname{supp}(f)$, where $i=1,2$.
(2) If a polynomial f divides a polynomial with support of dimension 1 then the dimension of support of f is 1 .

Almost Unique Factorization Theorem

Theorem (DMT):
Let $f(\bar{X}) \in K[\bar{X}]^{E}$, where (K, E) is an algebraically closed E-field of char 0 and $f \neq 0$. Then f factors, uniquely up to units and associates, as finite product of irreducibles of $K[\bar{X}]$, a finite product of irreducible polynomials F_{i} in $K[\bar{X}]^{E}$ with support of dimension bigger than 1, and a finite product of polynomials G_{j} where $\operatorname{supp}\left(G_{j 1}\right) \neq \operatorname{supp}\left(G_{j 2}\right)$, for $j_{1} \neq j_{2}$ and whose supports are of dimension 1.

Remark:

Almost Unique Factorization Theorem

Theorem (DMT):

Let $f(\bar{X}) \in K[\bar{X}]^{E}$, where (K, E) is an algebraically closed E-field of char 0 and $f \neq 0$. Then f factors, uniquely up to units and associates, as finite product of irreducibles of $K[\bar{X}]$, a finite product of irreducible polynomials F_{i} in $K[\bar{X}]^{E}$ with support of dimension bigger than 1, and a finite product of polynomials G_{j} where $\operatorname{supp}\left(G_{j 1}\right) \neq \operatorname{supp}\left(G_{j 2}\right)$, for $j_{1} \neq j_{2}$ and whose supports are of dimension 1 .

Remark:

(1) If a polynomial f factors as $f_{1} \cdot f_{2}$ then $\operatorname{supp}\left(f_{i}\right) \subseteq \operatorname{supp}(f)$, where $i=1,2$.
(2) If a polynomial f divides a polynomial with support of dimension 1 then the dimension of support of f is 1

Almost Unique Factorization Theorem

Theorem (DMT):

Let $f(\bar{X}) \in K[\bar{X}]^{E}$, where (K, E) is an algebraically closed E-field of char 0 and $f \neq 0$. Then f factors, uniquely up to units and associates, as finite product of irreducibles of $K[\bar{X}]$, a finite product of irreducible polynomials F_{i} in $K[\bar{X}]^{E}$ with support of dimension bigger than 1, and a finite product of polynomials G_{j} where $\operatorname{supp}\left(G_{j 1}\right) \neq \operatorname{supp}\left(G_{j 2}\right)$, for $j_{1} \neq j_{2}$ and whose supports are of dimension 1.

Remark:

(1) If a polynomial f factors as $f_{1} \cdot f_{2}$ then $\operatorname{supp}\left(f_{i}\right) \subseteq \operatorname{supp}(f)$, where $i=1,2$.
(2) If a polynomial f divides a polynomial with support of dimension 1 then the dimension of support of f is 1 .

Pseudo exponential fields or Zilber fields

Zilber's programme: Look for a canonical algebraically closed field of characteristic 0 with exponentiation.
K is a Zilber field if:

- K is an algebraically closed field of characteristic 0 ;
- $E:(K,+) \longrightarrow\left(K^{\times},\right)$is a surjective homomorphism and there is $\omega \in K$ transcendental over \mathbb{Q} such that $\operatorname{ker} E=\mathbb{Z} \omega$;
- Schanuel's Conjecture (SC) Let $\lambda_{1}, \ldots, \lambda_{n} \in K$ be linearly independent over \mathbb{Q}. Then $\mathbb{Q}\left(\lambda_{1}, \ldots, \lambda_{n}, E\left(\lambda_{1}\right), \ldots, E\left(\lambda_{n}\right)\right)$ has transcendence degree (t.d.) at least n over \mathbb{Q};
- Axioms giving criteria for solvability of systems of exponential equations.

Pseudo exponential fields or Zilber fields

Zilber's programme: Look for a canonical algebraically closed field of characteristic 0 with exponentiation.
K is a Zilber field if

- K is an algebraically closed field of characteristic 0 ;
e $E:(K,+) \longrightarrow\left(K^{\times}.\right)$is a surjective homomorphism and there is $\omega \in K$ transcendental over \mathbb{Q} such that $\operatorname{ker} E=\mathbb{Z} \omega$;
- Schanuel's Conjecture (SC) Let $\lambda_{1}, \ldots, \lambda_{n} \in K$ be linearly independent over \mathbb{Q}. Then $\mathbb{Q}\left(\lambda_{1}, \ldots, \lambda_{n}, E\left(\lambda_{1}\right), \ldots, E\left(\lambda_{n}\right)\right)$ has transcendence degree (t.d.) at least n over \mathbb{Q};
- Axioms giving criteria for solvability of systems of exponential equations

Pseudo exponential fields or Zilber fields

Zilber's programme: Look for a canonical algebraically closed field of characteristic 0 with exponentiation.
K is a Zilber field if:

- K is an algebraically closed field of characteristic 0;
- $E:(K,+) \longrightarrow\left(K^{\times}, \cdot\right)$ is a surjective homomorphism and there is $\omega \in K$ transcendental over \mathbb{Q} such that $\operatorname{ker} E=\mathbb{Z} \omega$;
- Schanuel's Conjecture (SC) Let $\lambda_{1}, \ldots, \lambda_{n} \in K$ be linearly independent over \mathbb{Q}. Then $\mathbb{Q}\left(\lambda_{1}, \ldots, \lambda_{n}, E\left(\lambda_{1}\right), \ldots, E\left(\lambda_{n}\right)\right)$ has transcendence degree (t.d.) at least n over \mathbb{Q};
- Axioms giving criteria for solvability of systems of exponential equations.

Pseudo exponential fields or Zilber fields

Zilber's programme: Look for a canonical algebraically closed field of characteristic 0 with exponentiation.
K is a Zilber field if:

- K is an algebraically closed field of characteristic 0 ;
- $E:(K,+) \longrightarrow\left(K^{\times}, \cdot\right)$ is a surjective homomorphism and there is $\omega \in K$ transcendental over \mathbb{Q} such that $\operatorname{ker} E=\mathbb{Z} \omega$;
- Schanuel's Coniecture (SC) Let $\lambda_{1} \ldots \lambda_{n} \in K$ be linearly independent over \mathbb{Q}. Then $\mathbb{Q}\left(\lambda_{1}, \ldots, \lambda_{n}, E\left(\lambda_{1}\right), \ldots, E\left(\lambda_{n}\right)\right)$ has transcendence degree (t.d.) at least n over \mathbb{Q};
- Axioms giving criteria for solvability of systems of exponential equations

Zilber's programme: Look for a canonical algebraically closed field of characteristic 0 with exponentiation.

K is a Zilber field if:

- K is an algebraically closed field of characteristic 0 ;
- $E:(K,+) \longrightarrow\left(K^{\times}, \cdot\right)$ is a surjective homomorphism and there is $\omega \in K$ transcendental over \mathbb{Q} such that $\operatorname{ker} E=\mathbb{Z} \omega$;
- Schanuel's Conjecture (SC) Let $\lambda_{1}, \ldots, \lambda_{n} \in K$ be linearly independent over \mathbb{Q}. Then $\mathbb{Q}\left(\lambda_{1}, \ldots, \lambda_{n}, E\left(\lambda_{1}\right), \ldots, E\left(\lambda_{n}\right)\right)$ has transcendence degree (t.d.) at least n over \mathbb{Q};
- Axioms giving criteria for solvability of systems of exponential equations

Zilber's programme: Look for a canonical algebraically closed field of characteristic 0 with exponentiation.
K is a Zilber field if:

- K is an algebraically closed field of characteristic 0 ;
- $E:(K,+) \longrightarrow\left(K^{\times}, \cdot\right)$ is a surjective homomorphism and there is $\omega \in K$ transcendental over \mathbb{Q} such that $\operatorname{ker} E=\mathbb{Z} \omega$;
- Schanuel's Conjecture (SC) Let $\lambda_{1}, \ldots, \lambda_{n} \in K$ be linearly independent over \mathbb{Q}. Then $\mathbb{Q}\left(\lambda_{1}, \ldots, \lambda_{n}, E\left(\lambda_{1}\right), \ldots, E\left(\lambda_{n}\right)\right)$ has transcendence degree (t.d.) at least n over \mathbb{Q};
- Axioms giving criteria for solvability of systems of exponential equations

Zilber's programme: Look for a canonical algebraically closed field of characteristic 0 with exponentiation.
K is a Zilber field if:

- K is an algebraically closed field of characteristic 0 ;
- $E:(K,+) \longrightarrow\left(K^{\times}, \cdot\right)$ is a surjective homomorphism and there is $\omega \in K$ transcendental over \mathbb{Q} such that $\operatorname{ker} E=\mathbb{Z} \omega$;
- Schanuel's Conjecture (SC) Let $\lambda_{1}, \ldots, \lambda_{n} \in K$ be linearly independent over \mathbb{Q}. Then $\mathbb{Q}\left(\lambda_{1}, \ldots, \lambda_{n}, E\left(\lambda_{1}\right), \ldots, E\left(\lambda_{n}\right)\right)$ has transcendence degree (t.d.) at least n over \mathbb{Q};
- Axioms giving criteria for solvability of systems of exponential equations.

Categoricity

Theorem (Zilber):

The class of pseudo exponential fields has a unique model in every uncountable cardinality.

Zilber's Conjecture:

The unique model of cardinality $2^{N_{0}}$ is (C,E).

Categoricity

Theorem (Zilber):
The class of pseudo exponential fields has a unique model in every uncountable cardinality.

Zilber's Conjecture:

The unique model of cardinality $2^{\mathrm{K}_{\mathrm{o}}}$ is (C,E).

Categoricity

Theorem (Zilber):
The class of pseudo exponential fields has a unique model in every uncountable cardinality.

Zilber's Conjecture:
The unique model of cardinality $2^{N_{0}}$ is (C,E).

Categoricity

Theorem (Zilber):
The class of pseudo exponential fields has a unique model in every uncountable cardinality.

Zilber's Conjecture:

The unique model of cardinality $2^{\aleph_{0}}$ is (\mathbb{C}, E).

Categoricity

Theorem (Zilber):
The class of pseudo exponential fields has a unique model in every uncountable cardinality.

Zilber's Conjecture:

The unique model of cardinality $2^{\aleph_{0}}$ is (\mathbb{C}, E).

Compare (\mathbb{C}, E) and (K, E)

- Does (\mathbb{C}, E) satisfy properties which will follow directly from Zilber's axioms?

- Does (K, E) satisfy properties which are known for (\mathbb{C}, E) ?

Compare (\mathbb{C}, E) and (K, E)

- Does (\mathbb{C}, E) satisfy properties which will follow directly from Zilber's axioms?
- Does (K, E) satisfy properties which are known for (\mathbb{C}, E) ?

Compare (\mathbb{C}, E) and (K, E)

- Does (\mathbb{C}, E) satisfy properties which will follow directly from Zilber's axioms?
- Does (K, E) satisfy properties which are known for (\mathbb{C}, E) ?

Questions

(1) When does the polynomial $F\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]^{E}$ has no solutions in \mathbb{C} ?
(2) If $\lambda_{1}, \ldots, \lambda_{m}, \mu_{1}, \ldots, \mu_{n}, c_{1}, \ldots, c_{m}, d_{1}, \ldots, d_{n} \in \mathbb{C}$, when does the system

$$
\left\{\begin{array}{l}
c_{1} \exp \left(\lambda_{1}\right)+\ldots c_{n} \exp \left(\lambda_{n}\right)=0 \\
d_{1} \exp \left(\mu_{1}\right)+\ldots d_{m} \exp \left(\mu_{m}\right)=0
\end{array}\right.
$$

have infinitely many solutions in \mathbb{C} ?

Questions

(1) When does the polynomial $F\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]^{E}$ has no solutions in \mathbb{C} ?
(2) If $\lambda_{1}, \ldots, \lambda_{m}, \mu_{1}, \ldots, \mu_{n}, c_{1}, \ldots, c_{m}, d_{1}, \ldots, d_{n} \in \mathbb{C}$, when does the system

$$
\left\{\begin{array}{l}
c_{1} \exp \left(\lambda_{1}\right)+\ldots c_{n} \exp \left(\lambda_{n}\right)=0 \\
d_{1} \exp \left(\mu_{1}\right)+\ldots d_{m} \exp \left(\mu_{m}\right)=0
\end{array}\right.
$$

have infinitely many solutions in \mathbb{C} ?

Questions

(1) When does the polynomial $F\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]^{E}$ has no solutions in \mathbb{C} ?
(2) If $\lambda_{1}, \ldots, \lambda_{m}, \mu_{1}, \ldots, \mu_{n}, c_{1}, \ldots, c_{m}, d_{1}, \ldots, d_{n} \in \mathbb{C}$, when does the system

have infinitely many solutions in \mathbb{C} ?

Questions

(1) When does the polynomial $F\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]^{E}$ has no solutions in \mathbb{C} ?
(2) If $\lambda_{1}, \ldots, \lambda_{m}, \mu_{1}, \ldots, \mu_{n}, c_{1}, \ldots, c_{m}, d_{1}, \ldots, d_{n} \in \mathbb{C}$, when does the system

$$
\begin{cases}c_{1} \exp \left(\lambda_{1}\right)+\ldots c_{n} \exp \left(\lambda_{n}\right) & =0 \\ d_{1} \exp \left(\mu_{1}\right)+\ldots d_{m} \exp \left(\mu_{m}\right) & =0\end{cases}
$$

have infinitely many solutions in \mathbb{C} ?

Answers to first question

© Theorem (Henson and Rubel 1984):
Let $F\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]^{E}$.
$F\left(z_{1}, \ldots, z_{n}\right)$ has no solution in \mathbb{C} iff $F\left(z_{1}, \ldots, z_{n}\right)=e^{G\left(z_{1}, \ldots, z_{n}\right)}$
where $G\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]^{E}$
© Theorem (DMT):
Let $F\left(z_{1}, \ldots, z_{n}\right) \in K\left[z_{1}, \ldots, z_{n}\right]^{E}$, where K is a Zilber field, then
$F\left(z_{1}, \ldots, z_{n}\right)$ has no root in K iff $F\left(z_{1}, \ldots, z_{n}\right)=e^{H\left(z_{1}, \ldots, z_{n}\right)}$,
where $H\left(z_{1}, \ldots, z_{n}\right) \in K\left[z_{1}, \ldots, z_{n}\right]^{E}$.
Proof:

Answers to first question

© Theorem (Henson and Rubel 1984):
Let $F\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]^{E}$.
$F\left(z_{1}, \ldots, z_{n}\right)$ has no solution in \mathbb{C} iff $F\left(z_{1}, \ldots, z_{n}\right)=e^{G\left(z_{1}, \ldots, z_{n}\right)}$
where $G\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]^{E}$
© Theorem (DMT):
Let $F\left(z_{1}, \ldots, z_{n}\right) \in K\left[z_{1}, \ldots, z_{n}\right]^{E}$, where K is a Zilber field, then
$F\left(z_{1}, \ldots, z_{n}\right)$ has no root in K iff $F\left(z_{1}, \ldots, z_{n}\right)=e^{H\left(z_{1}, \ldots, z_{n}\right)}$,
where $H\left(z_{1}, \ldots, z_{n}\right) \in K\left[z_{1}, \ldots, z_{n}\right]^{E}$.
Proof:

Answers to first question

(1) Theorem (Henson and Rubel 1984):

Let $F\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]^{E}$.
$F\left(z_{1}, \ldots, z_{n}\right)$ has no solution in \mathbb{C} iff $F\left(z_{1}, \ldots, z_{n}\right)=e^{G\left(z_{1}, \ldots, z_{n}\right)}$
where $G\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]^{E}$
(1) Theorem (DMT):

Let $F^{\prime}\left(z_{1}, \ldots, z_{n}\right) \in K\left[z_{1}, \ldots, z_{n}\right]^{E}$, where K is a Zilber field, then
$F\left(z_{1}, \ldots, z_{n}\right)$ has no root in K iff $F\left(z_{1}, \ldots, z_{n}\right)=e^{H\left(z_{1}, \ldots, z_{n}\right)}$
where $H\left(z_{1}, \ldots, z_{n}\right) \in K^{[} z_{1}, \ldots, z_{n}{ }^{1 E}$
Proof:

Answers to first question

(1) Theorem (Henson and Rubel 1984):

Let $F\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]^{E}$.
$F\left(z_{1}, \ldots, z_{n}\right)$ has no solution in \mathbb{C} iff $F\left(z_{1}, \ldots, z_{n}\right)=e^{G\left(z_{1}, \ldots, z_{n}\right)}$ where $G\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]^{E}$.
© Theorem (DMT):
Let $F\left(z_{1}, \ldots, z_{n}\right) \in K\left[z_{1}, \ldots, z_{n}\right]^{E}$, where K is a Zilber field, then
$F\left(z_{1}, \ldots, z_{n}\right)$ has no root in K iff $F\left(z_{1}, \ldots, z_{n}\right)=e^{H\left(z_{1}, \ldots, z_{n}\right)}$ where $H\left(z_{1}, \ldots, z_{n}\right) \in K\left[z_{1}, \ldots, z_{n}\right]^{E}$

Answers to first question

(1) Theorem (Henson and Rubel 1984):

Let $F\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]^{E}$.
$F\left(z_{1}, \ldots, z_{n}\right)$ has no solution in \mathbb{C} iff $F\left(z_{1}, \ldots, z_{n}\right)=e^{G\left(z_{1}, \ldots, z_{n}\right)}$ where $G\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]^{E}$.
(1) Theorem (DMT):

Let $F\left(z_{1}, \ldots, z_{n}\right) \in K\left[z_{1}, \ldots, z_{n}\right]^{E}$, where K is a Zilber field, then
$F^{\prime}\left(z_{1}, \ldots, z_{n}\right)$ has no root in K iff $F\left(z_{1}, \ldots, z_{n}\right)=e^{H\left(z_{1}, \ldots, z_{n}\right)}$ where $H\left(z_{1}, \ldots, z_{n}\right) \in K\left[z_{1}, \ldots, z_{n}\right]^{E}$.

Answers to first question

(1) Theorem (Henson and Rubel 1984):

Let $F\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]^{E}$.
$F\left(z_{1}, \ldots, z_{n}\right)$ has no solution in \mathbb{C} iff $F\left(z_{1}, \ldots, z_{n}\right)=e^{G\left(z_{1}, \ldots, z_{n}\right)}$ where $G\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]^{E}$.
(1) Theorem (DMT):

Let $F\left(z_{1}, \ldots, z_{n}\right) \in K\left[z_{1}, \ldots, z_{n}\right]^{E}$, where K is a Zilber field, then
$F\left(z_{1}, \ldots, z_{n}\right)$ has no root in K iff $F\left(z_{1}, \ldots, z_{n}\right)=e^{H\left(z_{1}, \ldots, z_{n}\right)}$, where $H\left(z_{1}, \ldots, z_{n}\right) \in K\left[z_{1}, \ldots, z_{n}\right]^{E}$.

Answers to first question

(1) Theorem (Henson and Rubel 1984):

Let $F\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]^{E}$.
$F\left(z_{1}, \ldots, z_{n}\right)$ has no solution in \mathbb{C} iff $F\left(z_{1}, \ldots, z_{n}\right)=e^{G\left(z_{1}, \ldots, z_{n}\right)}$ where $G\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]^{E}$.
(1) Theorem (DMT):

Let $F\left(z_{1}, \ldots, z_{n}\right) \in K\left[z_{1}, \ldots, z_{n}\right]^{E}$, where K is a Zilber field, then
$F\left(z_{1}, \ldots, z_{n}\right)$ has no root in K iff $F\left(z_{1}, \ldots, z_{n}\right)=e^{H\left(z_{1}, \ldots, z_{n}\right)}$, where $H\left(z_{1}, \ldots, z_{n}\right) \in K\left[z_{1}, \ldots, z_{n}\right]^{E}$.

Proof:
We use algebraic methods

Answer to second question

(2) Unknown, but there is a nice conjecture:

Shapiro's Conjecture (1958): If two exponential
polynomials f, g of the form

$$
f=c_{1} e^{\lambda_{1} z}+\ldots+c_{n} e^{\lambda_{n} z}, g=b_{1} e^{\mu_{1} z}+\ldots+b_{m} e^{\mu_{m} z}
$$

where $c_{i}, b_{j}, \lambda_{i}, \mu_{j} \in \mathbb{C}$ have infinitely many zeros in common they are both multiples of some exponential polynomial of the same kind.

Answer to second question

(2) Unknown, but there is a nice conjecture:

Shapiro's Conjecture (1958): If two exponential
polynomials f, g of the form

$$
f=c_{1} e^{\lambda_{1} z}+\ldots+c_{n} e^{\lambda_{n} z}, g=b_{1} e^{\mu_{1} z}+\ldots+b_{m} e^{\mu_{m} z}
$$

where $c_{i}, b_{j}, \lambda_{i}, \mu_{j} \in \mathbb{C}$ have infinitely many zeros in common they are both multiples of some exponential polynomial of the same kind.

Answer to second question

(2) Unknown, but there is a nice conjecture:

Shapiro's Conjecture (1958): If two exponential
polynomials f, g of the form

$$
f=c_{1} e^{\lambda_{1} z}+\ldots+c_{n} e^{\lambda_{n} z}, g=b_{1} e^{\mu_{1} z}+\ldots+b_{m} e^{\mu_{m} z}
$$

where $c_{i}, b_{j}, \lambda_{i}, \mu_{j} \in \mathbb{C}$ have infinitely many zeros in common they are both multiples of some exponential polynomial of the same kind.

Answer to second question

(2) Unknown, but there is a nice conjecture:

Shapiro's Conjecture (1958): If two exponential
polynomials f, g of the form

$$
f=c_{1} e^{\lambda_{1} z}+\ldots+c_{n} e^{\lambda_{n} z}, g=b_{1} e^{\mu_{1} z}+\ldots+b_{m} e^{\mu_{m} z}
$$

where $c_{i}, b_{j}, \lambda_{i}, \mu_{j} \in \mathbb{C}$ have infinitely many zeros in common they are both multiples of some exponential polynomial of the same kind.

Answer to second question

(2) Unknown, but there is a nice conjecture:

Shapiro's Conjecture (1958): If two exponential
polynomials f, g of the form

where $c_{i}, b_{j}, \lambda_{i}, \mu_{j} \in \mathbb{C}$ have infinitely many zeros in common they are both multiples of some exponential polynomial of the same kind.

Answer to second question

(2) Unknown, but there is a nice conjecture:

Shapiro's Conjecture (1958): If two exponential polynomials f, g of the form

$$
f=c_{1} e^{\lambda_{1} z}+\ldots+c_{n} e^{\lambda_{n} z}, g=b_{1} e^{\mu_{1} z}+\ldots+b_{m} e^{\mu_{m} z}
$$

where $c_{i}, b_{j}, \lambda_{i}, \mu_{j} \in \mathbb{C}$ have infinitely many zeros in common they are both multiples of some exponential polynomial of the same kind.

Special case of Shapiro's Conjecture in \mathbb{C}

Theorem (A.J. van der Poorten, R. Tijdeman) (1):
Let $f(z)=\sum \alpha_{j} e^{\beta_{j} z}$, with $\alpha_{j}, \beta_{j} \in \mathbb{C}$, be a simple exponential polynomial and let $g(z)$ be an arbitrary exponential polynomial such that $f(z)$ and $g(z)$ have infinitely many common zeros. Then there exists an exponential polynomial $h(z)$, with infinitely many zeros, such that h is a common factor of f and g in the ring of exponential polynomial.

Remark:

The factorization theorem implies that we need to consider only two cases of the Shapiro problem.

Special case of Shapiro's Conjecture in \mathbb{C}

Theorem (A.J. van der Poorten, R. Tijdeman) (1):

Let $f(z)=\sum \alpha_{j} e^{\beta_{j} z}$, with $\alpha_{j}, \beta_{j} \in \mathbb{C}$, be a simple exponential polynomial and let $g(z)$ be an arbitrary exponential polynomial such that $f(z)$ and $g(z)$ have infinitely many common zeros. Then there exists an exponential polynomial $h(z)$, with infinitely many zeros, such that h is a common factor of f and g in the ring of exponential polynomial.

Remark:

The factorization theorem implies that we need to consider only two cases of the Shapiro problem.

Special case of Shapiro's Conjecture in \mathbb{C}

Theorem (A.J. van der Poorten, R. Tijdeman) (1):
Let $f(z)=\sum \alpha_{j} e^{\beta_{j} z}$, with $\alpha_{j}, \beta_{j} \in \mathbb{C}$, be a simple exponential polynomial and let $g(z)$ be an arbitrary exponential polynomial such that $f(z)$ and $g(z)$ have infinitely many common zeros. Then there exists an exponential polynomial $h(z)$, with infinitely many zeros, such that h is a common factor of f and g in the ring of exponential polynomial.

Remark:
The factorization theorem implies that we need to consider only two cases of the Shapiro problem

Theorem (A.J. van der Poorten, R. Tijdeman) (1):
Let $f(z)=\sum \alpha_{j} e^{\beta_{j} z}$, with $\alpha_{j}, \beta_{j} \in \mathbb{C}$, be a simple exponential polynomial and let $g(z)$ be an arbitrary exponential polynomial such that $f(z)$ and $g(z)$ have infinitely many common zeros. Then there exists an exponential polynomial $h(z)$, with infinitely many zeros, such that h is a common factor of f and g in the ring of exponential polynomial.

Remark:

The factorization theorem implies that we need to consider only two cases of the Shapiro problem.

Integers solutions

Theorem (Skolem, Malher, Lech):
Let $f(z)=\sum \alpha_{j} e^{\beta_{j} z}$, be an exponential polynomial, where $\alpha, \beta \in K$ where K is a field of characteristic 0 . If $f(z)$ vanishes for infinitely many integers $z=z_{i}$, then there exists an integer d and certain set of least residues modulo d, d_{1}, \ldots, d_{l} such that $f(z)$ vanishes for all integers $z \equiv d_{i}(\bmod d)$, for $i=1, \ldots, l$, and $f(z)$ vanishes only finitely often on other integers.

Theorem (A.J. van der Poorten, R. Tijdeman):
Theorem (1) is equivalent to the Skolem-Malher-Lech Theorem

Integers solutions

Theorem (Skolem, Malher, Lech):
Let $f(z)=\sum \alpha_{j} e^{\beta_{j} z}$, be an exponential polynomial, where $\alpha, \beta \in K$ where K is a field of characteristic 0 . If $f(z)$ vanishes for infinitely many integers $z=z_{i}$, then there exists an integer d and certain set of least residues modulo d, d_{1}, \ldots, d_{l} such that $f(z)$ vanishes for all integers $z \equiv d_{i}(\bmod d)$, for $i=1, \ldots, l$, and $f(z)$ vanishes only finitely often on other integers.

Theorem (A.J. van der Poorten, R. Tijdeman): Theorem (1) is equivalent to the Skolem-Malher-I ech Theorem

Integers solutions

Theorem (Skolem, Malher, Lech):
Let $f(z)=\sum \alpha_{j} e^{\beta_{j} z}$, be an exponential polynomial, where $\alpha, \beta \in K$ where K is a field of characteristic 0 . If $f(z)$ vanishes for infinitely many integers $z=z_{i}$, then there exists an integer d and certain set of least residues modulo d, d_{1}, \ldots, d_{l} such that $f(z)$ vanishes for all integers $z \equiv d_{i}(\bmod d)$, for $i=1, \ldots, l$, and $f(z)$ vanishes only finitely often on other integers.

Theorem (A.J. van der Poorten, R. Tijdeman):
Theorem (1) is equivalent to the Skolem-Malher-Lech Theorem

Special case of Shapiro's Conjecture in K

Theorem (DMT):
Let $f(z)=\sum \alpha_{j} e^{\beta_{j} z}$. with $\alpha_{j}, \beta_{j} \in K$, where K is a Zilber Field, be a simple exponential polynomial and let $g(z)$ be an arbitrary exponential polynomial such that $f(z)$ and $g(z)$ have infinitely many common zeros. Then there exists an exponential polynomial $h(z)$, with infinitely many zeros, such that h is a common factor of f and g in the ring of exponential polynomial.

Special case of Shapiro's Conjecture in K

Theorem (DMT):

Let $f(z)=\sum \alpha_{j} e^{\beta_{j} z}$, with $\alpha_{j}, \beta_{j} \in K$, where K is a Zilber Field, be a simple exponential polynomial and let $g(z)$ be an arbitrary exponential polynomial such that $f(z)$ and $g(z)$ have infinitely many common zeros. Then there exists an exponential polynomial $h(z)$, with infinitely many zeros, such that h is a common factor of f and g in the ring of exponential polynomial.

