Covers of Elliptic Curves and Excellence

Martin Bays

August 20, 2009

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{C} \xrightarrow{exp} \mathbb{C}^{\times} \longrightarrow 1$

Let *E* be a complex elliptic curve.

$$0 \longrightarrow \mathbb{Z}^2 \longrightarrow \mathbb{C} \xrightarrow{\exp} E(\mathbb{C}) \longrightarrow 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{C} \xrightarrow{exp} \mathbb{C}^{\times} \longrightarrow 1$$

Let *E* be a complex elliptic curve.

$$0 \longrightarrow \mathbb{Z}^2 \longrightarrow \mathbb{C} \xrightarrow{\exp} E(\mathbb{C}) \longrightarrow 0$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$$0 \longrightarrow \mathbb{Z}^2 \longrightarrow \mathbb{C} \xrightarrow{\exp} E(\mathbb{C}) \longrightarrow 0$$

Assume

- *E* is over a number field k_0
- End(E) $\cong \mathbb{Z}$.

Language and first order theory T_E :

- Two sorts: $V \xrightarrow{\exp} E$.
- ► $V = \langle V; +, (q \cdot)_{q \in \mathbb{Q}} \rangle$, \mathbb{Q} -vector space.
- On E: relation for each k₀-Zariski-closed subset of Eⁿ; Ø-bi-interpretable with ACF^{k₀}.
- $exp: \langle V; + \rangle \xrightarrow{exp} \langle E; + \rangle$ surjective homomorphism.

$$0 \longrightarrow \mathbb{Z}^2 \longrightarrow \mathbb{C} \xrightarrow{\exp} E(\mathbb{C}) \longrightarrow 0$$

Assume

- *E* is over a number field k_0
- End(E) $\cong \mathbb{Z}$.

Language and first order theory T_E :

- Two sorts: $V \xrightarrow{\exp} E$.
- ► $V = \langle V; +, (q \cdot)_{q \in \mathbb{Q}} \rangle$, \mathbb{Q} -vector space.
- On E: relation for each k₀-Zariski-closed subset of Eⁿ; Ø-bi-interpretable with ACF^{k₀}.

• $exp: \langle V; + \rangle \xrightarrow{exp} \langle E; + \rangle$ surjective homomorphism.

Add constants ω_1, ω_2 and the $L_{\omega_1, \omega}$ axiom:

$$(\omega_1, \omega_2)$$
 is a \mathbb{Z} -basis of ker(exp). (ker $\cong \mathbb{Z}^2$)
Let $T_E^{\mathbb{Z}^2} := T_E \cup \{(\text{ker} \cong \mathbb{Z}^2)\}.$

If
$$A \leq \mathcal{M} \models T_E^{\mathbb{Z}^2}$$
 and $A = \langle V(A) \rangle^{\mathcal{M}}$

• ker
$$\leq V(A) \leq_{div} V(\mathcal{M})$$

► Tor
$$(E) \leq E(A) = \exp(V(A)) \leq_{div} E(\mathcal{M}).$$

Add constants ω_1, ω_2 and the $L_{\omega_1, \omega}$ axiom:

$$(\omega_1, \omega_2)$$
 is a \mathbb{Z} -basis of ker(exp). (ker $\cong \mathbb{Z}^2$)

Let
$$T_E^{\mathbb{Z}^2} := T_E \cup \{(\ker \cong \mathbb{Z}^2)\}.$$

Remark

If
$$A \leq \mathcal{M} \models T_E^{\mathbb{Z}^2}$$
 and $A = \langle V(A) \rangle^{\mathcal{M}}$

• ker
$$\leq$$
 V(A) \leq_{div} V(\mathcal{M})

• $\operatorname{Tor}(E) \leq E(A) = \exp(V(A)) \leq_{div} E(\mathcal{M}).$

Theorem (B, Gavrilovich, Zilber)

Suppose $\mathcal{M}_1, \mathcal{M}_2 \models T_E^{\mathbb{Z}^2}$, and suppose

$$\blacktriangleright \langle \emptyset \rangle^{\mathcal{M}_1} \cong \langle \emptyset \rangle^{\mathcal{M}_2}$$

•
$$\dim(E(\mathcal{M}_1)) = \dim(E(\mathcal{M}_2))$$

Then $\mathcal{M}_1 \cong \mathcal{M}_2$.

Remark

Only finitely many isomorphism types for $\langle \emptyset
angle^{\mathcal{M}_1}$

(日) (日) (日) (日) (日) (日) (日)

Theorem (B, Gavrilovich, Zilber)

Suppose $\mathcal{M}_1, \mathcal{M}_2 \models T_E^{\mathbb{Z}^2}$, and suppose

$$\blacktriangleright \langle \emptyset \rangle^{\mathcal{M}_1} \cong \langle \emptyset \rangle^{\mathcal{M}_2}$$

•
$$\dim(E(\mathcal{M}_1)) = \dim(E(\mathcal{M}_2))$$

Then $\mathcal{M}_1 \cong \mathcal{M}_2$.

Remark

Only finitely many isomorphism types for $\langle \emptyset \rangle^{\mathcal{M}}$.

(ロ) (同) (三) (三) (三) (○) (○)

Biblography

- [Z06] Boris Zilber: Covers of the multiplicative group of an algebraically closed field of characteristic zero; JLMS 2006.
- [BZ07] Martin Bays and Boris Zilber: Covers of multiplicative groups of algebraically closed fields in arbitrary characteristic; 2007; arXiv:0704.3561.
 - [G06] Misha Gavrilovich: Model theory of the universal covering spaces of complex algebraic varieties; PhD thesis, 2006.
 - [Z05] B. Zilber: Pseudo-exponentiation on algebraically closed fields of characteristic zero; APAL 2005.
 - [Z02] B. Zilber: Model theory, geometry and arithmetic of the universal cover of a semi-abelian variety; Quad. Mat. v11, 2002.
- [Z05b] Boris Zilber; A categoricity theorem for quasi-minimal excellent classes; Contemp. Math. v380, 2005.

Independent Systems

Let M ⊨ T_E^{Z²}.
Field-theoretic acl induces a closure operator cl
cl^M(A) ≤ M
cl^M induces a pregeometry on V(M).

Definition

 $\begin{array}{l} \underset{\mathcal{M}_{\{0,2\}}}{\overset{\mathcal{M}_{\{0,2\}}}{\longrightarrow}} & \text{Let } N := \{0, \dots, N-1\} \geq 0. \text{ A system} \\ (\mathcal{M}_s)_{s \subseteq N} \text{ of submodels of a model} \\ \mathcal{M} \models \mathcal{T}_E^{\mathbb{Z}^2} \text{ is an independent system iff} \\ & & \mathcal{M}_s \ \ \mathcal{M}_s \ \mathcal{M}_t \\ & & \mathcal{M}_{s \cap t} \\ & & & \mathcal{M}_s = \mathrm{cl}^{\mathcal{M}}(\bigcup_{i \in s} \mathcal{M}_i) \end{array}$

・ロト・西ト・西ト・西・ うくぐ

Independent Systems

Let M ⊨ T_E^{Z²}.
Field-theoretic acl induces a closure operator cl
cl^M(A) ≤ M
cl^M induces a pregeometry on V(M).

Definition

 $\begin{array}{l} \underset{\mathcal{M}_{\{0,2\}}}{\overset{\mathcal{M}_{\{0,2\}}}{\longrightarrow}} & \text{Let } N := \{0, \dots, N-1\} \geq 0. \text{ A system} \\ (\mathcal{M}_s)_{s \subseteq N} \text{ of submodels of a model} \\ \mathcal{M} \models \mathcal{T}_E^{\mathbb{Z}^2} \text{ is an independent system iff} \\ & & \mathcal{M}_s \ \ \mathcal{M}_{s \cap t} \\ & & & \mathcal{M}_{s \cap t} \\ & & & \mathcal{M}_s = \mathsf{cl}^{\mathcal{M}}(\bigcup_{i \in s} \mathcal{M}_i) \end{array}$

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ④ < ⊙

Thumbtack Lemma

Theorem (Thumbtack Lemma)

(M_s)_{s⊆N} an independent system of submodels of M ⊨ T_E^{2²}, N ≥ 0
H := ⟨U_{s⊊N} M_s⟩^M
H ≤_{fg} A ≤ M

Then there exists a basis \overline{a} of A over H such that

 $qftp(exp(\overline{a})/exp(H)) \models qftp(\overline{a}/H).$

qftp((exp(a/n)) $_{n \in \mathbb{N}}/$ exp(H)) \models qftp(\overline{a}/H), so the condition on \overline{a} is equivalent to: for each m, all m-division points of exp(\overline{a}) are field-conjugate over $s_{0}(\exp(H), \exp(\overline{a}))$.

Thumbtack Lemma

Theorem (Thumbtack Lemma)

(M_s)_{s⊆N} an independent system of submodels of M ⊨ T_E^{2²}, N ≥ 0
H := ⟨U_{s⊊N} M_s⟩^M
H ≤_{fg} A ≤ M

Then there exists a basis \overline{a} of A over H such that

 $qftp(exp(\overline{a})/exp(H)) \models qftp(\overline{a}/H).$

 $\operatorname{qftp}((\exp(\overline{a}/n))_{n\in\mathbb{N}}/\exp(H))\models\operatorname{qftp}(\overline{a}/H),$

so the condition on \overline{a} is equivalent to: for each m, all m-division points of $exp(\overline{a})$ are field-conjugate over $k_0(exp(H), exp(\overline{a}))$.

Corollary of Thumbtacks

Corollary

(M_s)_{s⊆N} an independent system of countable submodels of M ⊨ T^{Z²}_E, N ≥ 0

$$\bullet H := \left\langle \bigcup_{s \subsetneq N} \mathcal{M}_s \right\rangle^2$$

•
$$H \leq_{fg} A \leq \mathcal{M}$$

Then any embedding

$$\sigma: A \longrightarrow \mathcal{M}' \models T_E^{\mathbb{Z}^2}$$

extends to an isomorphism

$$\mathsf{cl}^{\mathcal{M}}(A) \xrightarrow{\cong} \mathsf{cl}^{\mathcal{M}'}(\sigma A)$$
.

(日) (日) (日) (日) (日) (日) (日)

Proof of Theorem 1

Suppose $\mathcal{M}_1, \mathcal{M}_2 \models \mathit{T}_{\mathit{E}}^{\mathbb{Z}^2}$, and suppose

$$\blacktriangleright \langle \emptyset \rangle^{\mathcal{M}_1} \cong \langle \emptyset \rangle^{\mathcal{M}_2}$$

$$\blacktriangleright \ dim(\mathcal{M}_1) = dim(\mathcal{M}_2)$$

Let $(\alpha_i^j)_{i \in I}$ enumerate a cl-basis of \mathcal{M}_j . For $s \subseteq I$, let $\mathcal{A}_s^j := \operatorname{cl}^{\mathcal{M}_j}((\alpha_i^j)_{i \in s})$. By the Corollary $(N = 0, A = H = \mathcal{A}_{\emptyset}^1)$, exists

$$\sigma_{\emptyset}: A^1_{\emptyset} \xrightarrow{\cong} A^2_{\emptyset}$$
.

By the Corollary ($N = 1, A = \langle A_{\emptyset}^1, \alpha_i^1 \rangle^{\mathcal{M}_1}$), for $i \in I$ exists

$$\sigma_{\{i\}}: A^{\mathbf{1}}_{\{i\}} \xrightarrow{\cong} A^{\mathbf{2}}_{\{i\}}$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

extending σ_{\emptyset} such that $\sigma_{\{i\}}(\alpha_i^1) = \alpha_i^2$.

Now suppose $s \subset_{fin} I$ and for $t \subsetneq s$ we have $\sigma_t : A_t^1 \xrightarrow{\cong} A_t^2$, agreeing on intersections. Then by *N*-uniqueness for ACF₀,

$$\left\langle \bigcup_{t \subsetneq s} \sigma_t \right\rangle : \left\langle (\mathbf{A}_t^1)_{t \subsetneq s} \right\rangle^{\mathcal{M}_1} \overset{\cong}{\longrightarrow} \left\langle (\mathbf{A}_t^2)_{t \subsetneq s} \right\rangle^{\mathcal{M}_2},$$

which by the Corollary (N = |s|, $A = H = \langle (A_t^1)_{t \subseteq s} \rangle^{M_1}$) extends to

$$\sigma_{\boldsymbol{s}}: \boldsymbol{A}_{\boldsymbol{s}}^{1} \xrightarrow{\cong} \boldsymbol{A}_{\boldsymbol{s}}^{2}$$
 .

So

$$\sigma := \bigcup_{s \subset_{fin} I} \sigma_s : \mathcal{M}_1 \xrightarrow{\cong} \mathcal{M}_2$$
 .

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Lemma (Thumbtack Lemma)

 (M_s)_{s⊆N} an independent system of submodels of M ⊨ T_E<sup>Z²</sub>, N ≥ 0

</sup>

$$H := \left\langle \bigcup_{s \subsetneq N} \mathcal{M}_s \right\rangle^{\mathcal{N}}$$
$$H \leq_{fg} A \leq \mathcal{M}$$

Then there exists a basis \overline{a} of A over H such that

 $qftp(exp(\overline{a})/exp(H)) \models qftp(\overline{a}/H).$

The condition on \overline{a} is equivalent to: for each *m*, all *m*-division points of $\exp(\overline{a})$ are field-conjugate over $k := k_0(\exp(H), \exp(\overline{a}))$. In particular, the subgroup generated by $\exp(\overline{a})$ is pure in E(k).

Lemma (Thumbtack Lemma)

 (M_s)_{s⊆N} an independent system of submodels of M ⊨ T_E<sup>Z²</sub>, N ≥ 0

</sup>

$$H := \left\langle \bigcup_{s \subsetneq N} \mathcal{M}_s \right\rangle^{\mathcal{N}}$$
$$H \leq_{fg} A \leq \mathcal{M}$$

Then there exists a basis \overline{a} of A over H such that

 $qftp(exp(\overline{a})/exp(H)) \models qftp(\overline{a}/H).$

The condition on \overline{a} is equivalent to: for each *m*, all *m*-division points of $\exp(\overline{a})$ are field-conjugate over $k := k_0(\exp(H), \exp(\overline{a}))$. In particular, the subgroup generated by $\exp(\overline{a})$ is pure in E(k).

Theorem

Let k be a finitely generated extension of $k_0(\exp(H))$. Then

 $E(k)/\exp(H)$

is locally free.

Remark

- Locally free means: pure hull of any finitely generated subgroup is finitely generated.
- The Thumbtack Lemma then follows via Kummer theory.

(日) (日) (日) (日) (日) (日) (日)

Sketch Proof of E(k)/G locally free

Let $G := \exp(H)$. Proceed by induction on *N*. N = 1: By Lang-Néron, E(k)/G is even finitely generated. Consider case N = 3. We have the independent system of algebraically closed fields:

and
$$k = L_{\{0,1\}}L_{\{1,2\}}L_{\{0,2\}}(\overline{\beta})$$
 say. We may assume $\overline{\beta} \in L_3$.
Let $\overline{b} \in E(k)^n$.

Lemma

There exists $k_1 \ge_{fin} L_{\{0,1\}}L_{\{0,2\}}(\overline{\beta}, \overline{b})$ and a place $\pi : L_3 \to_{L_{\{1,2\}}} L_{\{1,2\}}$ such that $\blacktriangleright \pi k_1 \subseteq k_1$ $\flat \pi(L_{\{0,1\}}L_{\{0,2\}}) = L_{\{1\}}L_{\{2\}}$

Sketch Proof of E(k)/G locally free cont^d

Lemma

$$pureHull_{E(k)}(E(k_1)) = pureHull_{E(k_1)+E(L_{\{1,2\}})}(E(k_1)).$$

pureHull
$$_{E(k)/G}(\langle \overline{b}/G \rangle) = {}^{\text{pureHull}_{E(k)}(\langle \overline{b} \rangle)/G}$$

= ${}^{\text{pureHull}_{E(k_1)+E(L_{\{1,2\}})}(\langle \overline{b} \rangle)/G}$
 $\leq {}^{\text{pureHull}_{E(k_1)}(\langle \overline{b}, \pi(\overline{b}) \rangle)/G}$

(since if $m(\alpha_{k_1} + \alpha_{L_{\{1,2\}}}) \in \langle \overline{b} \rangle$, then $\gamma := (\alpha_{k_1} + \alpha_{L_{\{1,2\}}}) - \pi(\alpha_{k_1} + \alpha_{L_{\{1,2\}}}) = \alpha_{k_1} - \pi \alpha_{k_1} \in$ pureHull_{$E(k_1)$}($\langle \overline{b}, \pi \overline{b} \rangle$), and $\gamma = \alpha_{k_1} + \alpha_{L_{\{1,2\}}} \mod G$. So subgroup of quotient of ^{pureHull_{$E(k_1)$}($\langle \overline{b}, \pi \overline{b} \rangle$)/_{$E(L_{\{1\}}) + E(L_{\{2\}})$}, which is f.g. by induction, so f.g.}

Theorem

Let k be a finitely generated extension of $k_0(\exp(H))$; suppose \overline{a} is simple in E(k). Then the left image of the \overline{k}/k -Kummer-Tate pairing,

$$Z:=\left\langle {\operatorname{Gal}}(ar k/k), \overline a
ight
angle _{\infty}^{ar k/k}\leq T^n,$$

is of finite index in T^n .

Where $\mathcal{T} \cong \hat{\mathbb{Z}}^2$ is the product of the Tate modules, and

$$\begin{array}{rcl} \langle \cdot, \cdot \rangle_{\infty}^{k/k} & : & \operatorname{Gal}(\bar{k}/k) \times E(k) & \to & T \\ & ; & (\sigma, a) & \mapsto & (\sigma(\frac{1}{n}a) - \frac{1}{n}a)_n. \end{array}$$

(日) (日) (日) (日) (日) (日) (日)