Unidimensional simple theories

Ziv Shami Tel Aviv University

Ziv Shami Tel Aviv University Unidimensional simple theories

A complete first-order theory T is *simple* iff there is an independence relation (i.e. an invariant, symmetric and transitive relation with extension, finite character and local character) $\begin{array}{c} a \\ A \end{array} \begin{array}{c} B \\ A \end{array}$, for a and $A \subseteq B$ from the monster model C of T, that satisfies the independence theorem over a model.

 $a \downarrow A$ iff for every formula $\phi(x, y) \in L$ if $\phi(a, B)$ then $\phi(x, B)$ doesn't fork over A.

From now on T denotes a simple theory in a language L, and C denotes a fixed monster model of T.

Definition

The *SU*-rank of tp(a/A) is defined by induction on α : if $\alpha = \beta + 1$, $SU(a/A) \ge \alpha$ if there exists $B \supseteq A$ such that $\begin{array}{c} a & \swarrow & B \\ A & \end{array}$ and $SU(a/B) \ge \beta$; if α is a limit ordinal, $SU(a/A) \ge \alpha$ if $SU(a/A) \ge \beta$ for all $\beta < \alpha$.

T is called *supersimple* if $SU(p) < \infty$ for every $p \in S_x(A)$, for all A and finite x.

Definition

A formula $\phi(x, y) \in L$ is *low in x* if there exists $k < \omega$ such that for every \emptyset -indiscernible sequence $(b_i | i < \omega)$, the set $\{\phi(x, b_i) | i < \omega\}$ is inconsistent iff every (some) subset of it of size k is inconsistent. T is *low* if every formula is.

I'll say that a theory is *hypersimple* if it is simple and it eliminates hyperimaginaries, that is, on a complete type every type-definable equivalence relation is an intersection of definable equivalence relations.

Definition

 $p \in S(A)$ is said to be *orthogonal* to $q \in S(B)$ if $\begin{array}{c} a \\ C \end{array} \begin{array}{c} b \\ C \end{array}$ whenever tp(a/C) is a non-forking extension of p and tp(b/C) is a non-forking extension of q.

T is called *unidimensional* if any two non-algebraic types are non-orthogonal.

Problem (Shelah)

Is any unidimensional stable theory supersimple?

Theorem (Hrushovski - 1986)

Yes.

First, a proof in case L is countable [H0] and then in full generality [H1].

Theorem (S. - 2003)

A small simple unidimensional theory is supersimple [S3].

Theorem (Pillay - 2003)

A countable hypersimple low unidimensional theory is supersimple. (proved in [P] with additional assumption that removed later.)

In this talk I'll give an overview of the following new result [S4]:

Theorem (S. - 2008)

A countable hypersimple unidimensional theory is supersimple.

Analyzability - basic notions

From now on assume T is a hypersimple theory and work in C^{eq} . Let $p \in S(A)$ and let \mathcal{U} be an A-invariant set.

We say that p is (almost-) \mathcal{U} -internal if there exists a realization a of pand there exists $B \supseteq A$ with $\begin{bmatrix} a & & \\ & A \end{bmatrix} \begin{bmatrix} B \\ & \\ & B \end{bmatrix}$ such that $a \in dcl(B\bar{c})$ (respectively, $a \in acl(B\bar{c})$) for some tuple \bar{c} of realizations of \mathcal{U} .

We say that *p* is (almost-) analyzable in \mathcal{U} in α steps if there exists a sequence $I = (a_i | i \leq \alpha) \subseteq dcl(a_\alpha A)$, where $a_\alpha \models p$, such that $tp(a_i/A \cup \{a_j | j < i\})$ is (almost-) \mathcal{U} -internal for every $i \leq \alpha$.

Fact

Assume T is a hypersimple unidimensional theory, p is non-algebraic, and \mathcal{U} is unbounded. Then 1) for $a \models p$ there exists $a' \in dcl(Aa) \setminus acl(A)$ such that tp(a'/A) is \mathcal{U} -internal.

2) p is analyzable in U.

We say that the SU-rank of \mathcal{U} is $\leq \alpha$, and write $SU(\mathcal{U}) \leq \alpha$, if $Sup\{SU(p)|p \in S(A), p^{\mathcal{C}} \subseteq \mathcal{U}\} \leq \alpha$.

We say that \mathcal{U} is supersimple if there exists $\alpha \in On$ such that $SU(\mathcal{U}) \leq \alpha$. We say that \mathcal{U} has bounded finite SU-rank if $SU(\mathcal{U}) \leq n$ for some $n < \omega$.

Fact

Assume p is almost-analyzable in U in finitely many steps and U is supersimple. Then $SU(p) < \infty$.

A basic fact about internality and compactness yield:

Fact

Assume $p \in S(A)$ is analyzable in an A-definable set \mathcal{U} . Then p is almost-analyzable in \mathcal{U} in finitely many steps (in fact, p is analyzable in \mathcal{U} in finitely many steps, but this is harder).

Finding directly a non-algebraic supersimple definable set seems inaccessible. To resolve this, in [H0] and then in [P] new topologies have been introduced. Indeed, the main role of these topologies in their proof was the ability to express the relation $\Gamma_S(x)$ defined by

$$\Gamma_{\mathcal{S}}(x) = \exists y(\mathcal{S}(x,y) \land y \perp x)$$

as a closed relation for any Stone-closed relation S(x, y).

For the general case this topology will not be sufficient for producing a supersimple set directly. However, we will use a variant of this topology for a different purpose first:

Definition

Let $A \subseteq C$. An A-invariant set U is said to be a basic τ^{f} -open set over A if there is a $\phi(x, y) \in L(A)$ such that

 $\mathcal{U} = \{a | \phi(a, y) \text{ forks over } A\}.$

Note that the family of basic τ^{f} -open sets over A is closed under finite intersections, thus form a basis for a unique topology on $S_{x}(A)$. Clearly, the τ^{f} -topology refines the Stone-topology. If $acl_{x}(A)$ is infinite, the set $\{a \in C^{x} \mid a \notin acl(A)\}$ is an example of a τ^{f} -open set over A that is not Stone-open over A.

Definition

We say that the τ^{f} -topologies over A are closed under projections (T is PCFT over A) if for every τ^{f} -open set $\mathcal{U}(x, y)$ over A the set $\exists y \mathcal{U}(x, y)$ is a τ^{f} -open set over A. We say that the τ^{f} -topologies are closed under projections (T is PCFT) if they are over every set A.

The following result reduces the main problem to the problem of producing an unbounded supersimple τ^f -open set, provided that we know PCFT.

Fact (S2)

Assume T is a simple theory with PCFT. Let $p \in S(A)$ and let \mathcal{U} be a τ^{f} -open set over A. Suppose p is analyzable in \mathcal{U} . Then p is analyzable in \mathcal{U} in finitely many steps.

Recall the following notion from [BPV].

Definition

We say that the extension property is first-order in T (I'll say T is EPFO) if for every formulas $\phi(x, y), \psi(y, z) \in L$ the relation $Q_{\phi,\psi}$ defined by:

 $Q_{\phi,\psi}(a)$ iff $\phi(x,b)$ doesn't fork over a for every $b\models\psi(y,a)$

is type-definable (here a can be an infinite tuple from \mathcal{C} whose sorts are fixed).

Remark

Note that if T is EPFO then T eliminates \exists^{∞} . Thus by Shelah's fcp theorem we get that a stable theory with EPFO has the nfcp. The converse is also true. This suggests an analogue notion for simple theories. If T is low and EPFO then we say T has the wnfcp [BPV].

Fact (S1)

Let T be a simple unidimensional theory. Then T eliminates \exists^{∞} .

Corollary (Pillay)

A simple unidimensional theory is EPFO.

Lemma Let T be a simple theory with EPFO. Then T is PCFT.

Corollary

Let T be a simple unidimenisonal theory. Then T is PCFT.

Corollary

Let T be a hypersimple unidimensional theory. Let $p \in S(A)$ and let \mathcal{U} be an unbounded τ^{f} -open set over A. Then p is analyzable in \mathcal{U} in finitely many steps. In particular, for such T the existence of an unbounded supersimple τ^{f} -open set over some set A implies T is supersimple. At this point it easy to conclude that any countable hypersimple low unidimensional theory is supersimple. Indeed, the existence of such a set follows by Hrushovski's Baire categoricity argument [H0] applied to the τ^{f} -topology using PCFT:

Fix a non-algebraic sort s. W.l.o.g. there is $p_0 \in S(\emptyset)$ with $SU(p_0) = 1$. For all \emptyset -definable functions $f(x), g(y, \overline{z})$ let

 $F_{f,g} = \{ a \in \mathcal{C}^s | f(a) = g(b,\bar{c}) \notin acl(\emptyset) \text{ for some } \bar{c} \subseteq p_0^{\mathcal{C}} \text{ and some } b \ \bigcup \ f(a) \}$

By the basic property of the τ^{f} -topology ($\Gamma_{S}(x)$ is τ^{f} -closed whenever S(x, y) is Stone-closed), each $F_{f,g}$ is τ^{f} -closed. By unidimensionality,

$$\mathcal{C}^{s}\setminus \operatorname{acl}(\emptyset) = \bigcup_{f,g} F_{f,g}.$$

By Baire categoricity theorem, there are f^*, g^* s.t. F_{f^*,g^*} has non-empty τ^f -interior. By PCFT, $f^*[F_{f^*,g^*}]$ contains an unbounded τ^f -open set over \emptyset . As each $d \in f^*[F_{f^*,g^*}]$ is internal in $p_0, f^*[F_{f^*,g^*}]$ has finite *SU*-rank (in fact, bounded finite *SU*-rank).

The reason this argument works is that the τ^{f} -topology in a low theory is a Baire space (as basic τ^{f} -open sets are type-definable).

The general case requires some new technologies. Generally, it is achieved via the dividing line "T is essentially 1-based" which roughly means that every type is analyzable by types that are 1-based up to a nowhere dense error in the sense of the forking topology:

Definition

A family

 $\Upsilon = \{\Upsilon_{x,A} | x \text{ is a finite sequence of variables and } A \subset \mathcal{C} \text{ is small} \}$

is said to be a projection closed family of topologies if each $\Upsilon_{x,A}$ is a topology on $S_x(A)$ that refines the Stone-topology on $S_x(A)$, this family is invariant under automorphisms of C and change of variables by variables of the same sort, the family is closed under product by the Stone spaces $S_y(A)$ (where y is a disjoint tuple of variables), and the family is closed under projections, namely whenever $\mathcal{U}(x, y) \in \Upsilon_{xy,A}$, $\exists y \mathcal{U}(x, y) \in \Upsilon_{x,A}$.

Remark

There are two natural examples of projections-closed families of topologies; the Stone topologies and the τ^{f} -topologies of a theory with PCFT.

A dichotomy for projection closed topologies

From now on fix a projection closed family of topologies Υ .

Definition

1) A type $p \in S(A)$ is said to be essentially 1-based by mean of Υ if for every finite tuple \bar{c} from p and for every type-definable Υ -open set \mathcal{U} over $A\bar{c}$, the set $\{a \in \mathcal{U} \mid a$ $acl^{eq}(Aa) \cap acl^{eq}(A\bar{c})$ } is nowhere dense in the Stone-topology of \mathcal{U} .

2) Let V be an A-invariant set and let $p \in S(A)$. We say that p is analyzable in V by essentially 1-based types by mean of Υ if there exists a sequence $(a_i | i \leq \alpha) \subseteq dcl^{eq}(Aa_\alpha)$ with $a_\alpha \models p$ such that $tp(a_i/A \cup \{a_j | j < i\})$ is V-internal and essentially 1-based by mean of Υ for all $i \leq \alpha$.

Example

The unique non-algebraic 1-type over \emptyset in algebraically closed fields is essentially 1-based by mean of the Stone-topologies but not by mean of the τ^{f} -topologies.

Theorem

Let T be a countable hypersimple theory. Let Υ be a projection-closed family of topologies. Let p_0 be a partial type over \emptyset of SU-rank 1. Then, either there exists an unbounded finite-SU-rank (possibly with no finite bound) Υ -open set, OR every type $p \in S(A)$, with A countable, that is internal in p_0 is essentially 1-based by mean of Υ . In particular, if T is in addition unidimensional, either there exists an unbounded finite SU-rank Υ -open set, or every $p \in S(\emptyset)$ is analyzable in p_0 by essentially 1-based types by mean of Υ .

Definition

Definition

1) For $a \in C$ and $A \subseteq C$ the SU_{se} -rank is defined by induction on α : if $\alpha = \beta + 1$, $SU_{se}(a/A) \ge \alpha$ if there exist $B_1 \supseteq B_0 \supseteq A$ such that $a \swarrow B_1 \qquad \text{and} SU_{se}(a/B_1) \ge \beta$; for limit α , $SU_{se}(a/A) \ge \alpha$ if $SU_{se}(a/A) \ge \beta$ for all $\beta < \alpha$.

2) Let \mathcal{U} be an A-invariant set. We write $SU_{se}(\mathcal{U}) = \alpha$ (the SU_{se} -rank of \mathcal{U} is α) if $Max\{SU_{se}(p)|p \in S(A), p^{\mathcal{C}} \subseteq \mathcal{U}\} = \alpha$. We say that \mathcal{U} has bounded finite SU_{se} -rank if for some $n < \omega$, $SU_{se}(\mathcal{U}) = n$.

Remark Note that for all $a \in C$ and $A \subseteq B \subseteq C$:

- 1) $SU_{se}(a/B) \leq SU_{se}(a/A)$,
- 2) $SU_{se}(a/A) \leq SU(a/A)$,

3)
$$SU_{se}(a/A) = 0$$
 iff $a \in acl(A)$.

Lemma

Existence of an unbounded τ^{f}_{∞} -open set of bounded finite SU_{se} -rank

Definition

The τ_{∞}^{f} -topology on S(A) is the topology whose basis is the family of type-definable τ^{f} -open sets over A.

By the dichotomy theorem and the previous corollary it is not hard to conclude:

Lemma

Let T be a countable hypersimple unidimensional theory. Assume there is $p_0 \in S(\emptyset)$ of SU-rank 1 and there exists an unbounded τ^f_{∞} -open set of bounded finite SU_{se}-rank that is over a finite set. Then T is supersimple.

Existence of an unbounded τ^{f}_{∞} -open set of bounded finite SU_{se} -rank

A Baire categoricity argument using an "independence relation" like

 $\downarrow s$ instead of \downarrow seemed very natural but doesn't seem to work. The problem is that we need the SU_{se} -rank (or some variant of it) to be preserved in free extensions.

The solution of this obtained by analyzing generalizations of local versions of sets of the form:

$$U_{f,n} = \{a \in \mathcal{C}^s | SU_{se}(f(a)) \ge n\}$$

where $n < \omega$ and f is a \emptyset -definable function.

$\tilde{\tau}^{f}$ -sets

Definition

A relation $V(x, z_1, ..., z_l)$ is said to be a pre- $\tilde{\tau}^f$ -set relation (of degree I) if there are $\theta(\tilde{x}, x, z_1, z_2, ..., z_l) \in L$ and $\phi_i(\tilde{x}, y_i) \in L$ for $0 \le i \le l$ such that for all $a, d_1, ..., d_l \in C$ we have

$$V(a, d_1, ..., d_l) \text{ iff } \exists \tilde{a} \left[\theta(\tilde{a}, a, d_1, d_2, ..., d_l) \land \bigwedge_{i=0}^l (\phi_i(\tilde{a}, y_i) \text{ forks over } d_1 d_2 ... d_i) \right]$$

(for i = 0 the sequence $d_1 d_2 \dots d_i$ is interpreted as \emptyset). Note that if T is PCFT then V is a pre- $\tilde{\tau}^f$ -set relation of degree 0 iff V is a τ^f -open set.

Definition

1) A $\tilde{\tau}^{f}$ -set over \emptyset is a set of the form

$$\mathcal{U} = \{ a | \exists d_1, d_2, ..., d_l \ V(a, d_1, ..., d_l) \}$$

for some pre- $\tilde{\tau}^{f}$ -set relation $V(x, z_1, ..., z_l)$.

$\tilde{\tau}^{f}$ -sets

Remark

By symmetry of $\ \ \, \downarrow s$, $U_{f,n}$ is a union of $\tilde{\tau}^f$ -sets for all f, n.

The main tool for producing an unbounded τ_{∞}^{f} -open set of bounded finite SU_{se} -rank is the following theorem. It says that any minimal unbounded fiber of an unbounded $\tilde{\tau}^{f}$ -set is a τ^{f} -open set:

Theorem

Assume T is simple and EPFO. Let \mathcal{U} be an unbounded $\tilde{\tau}^f$ -set over \emptyset . Then there exists an unbounded τ^f -open set \mathcal{U}^* over some finite set A^* such that $\mathcal{U}^* \subseteq \mathcal{U}$. In fact, if $V(x, z_1, ..., z_l)$ is a pre- $\tilde{\tau}^f$ -set relation such that $\mathcal{U} = \{a | \exists d_1 ... d_l V(a, d_1, ..., d_l)\}$, and $(d_1^*, ..., d_m^*)$ is any maximal sequence (with respect to extension) such that $\exists d_{m+1} ... d_l V(\mathcal{C}, d_1^*, ..., d_m^*, d_{m+1}, ..., d_l)$ is unbounded, then

$$\mathcal{U}^* = \exists d_{m+1}...d_l V(\mathcal{C}, d_1^*, ..., d_m^*, d_{m+1}, ..., d_l)$$

is a τ^{f} -open set over $d_{1}^{*}...d_{m}^{*}$.

 $\tilde{\tau}^{t}$ -sets

Building on the previous theorem we show the existence of the required set. This completes the proof of the main result.

Theorem

Let T be a countable simple theory with EPFO. Let s be a sort such that C^s is not algebraic. Assume for every $a \in C^s \setminus acl(\emptyset)$ there exists $a' \in dcl(a) \setminus acl(\emptyset)$ such that $SU_{se}(a') < \omega$. Then there exists an unbounded τ^f_{∞} -open set of bounded finite SU_{se} -rank that is over a finite set.

It is easy to conclude:

Corollary

Let T be a countable theory with nfcp. Let s be a sort such that C^s is not algebraic. Assume for every $a \in C^s \setminus acl(\emptyset)$ there exists $a' \in dcl(a) \setminus acl(\emptyset)$ with $SU(a') < \omega$. Then there exists a SU-rank 1 definable set.

Corollary

A countable hypersimple unidimensional theory has the wnfcp.

[BPV] I.Ben-Yaacov, A.Pillay, E.Vassiliev, Lovely pairs of models, Annals of Pure and Applied Logic 122 (2003), no. 1-3.

[H0] E.Hrushovski, Countable unidimensional stable theories are superstable, unpublished paper.

[H1] E.Hrushovski, Unidimensional theories are superstable, Annals of Pure and Applied Logic, 50 (1990), pgs 117-138.

[P] A.Pillay, On countable simple unidimensional theories, Journal of Symbolic Logic 68 (2003), no. 4.

[S1] Z.Shami, Coordinatization by binding groups and unidimensionality in simple theories, Journal of Symbolic Logic 69, no. 4, 2004, pgs. 1221-1242.

[S2] Z.Shami, On analyzability in the forking topology for simple theories, Annals of Pure Applied Logic 142 (2006), no. 1-3, 115–124.

[S3] Z.Shami, On Kueker simple theories, J. Symbolic Logic 70 (2005), no. 1, 216–222.

[S4] Z.Shami, Countable imaginary simple unidimensional theories, preprint.