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Simple theories

A complete first-order theory T is simple iff there is an independence
relation (i.e. an invariant, symmetric and transitive relation with

extension, finite character and local character)
a |̂ B

A
, for a and

A ⊆ B from the monster model C of T , that satisfies the independence
theorem over a model.

a |̂ B
A

iff for every formula φ(x , y) ∈ L if φ(a, B) then φ(x , B)

doesn’t fork over A.

From now on T denotes a simple theory in a language L, and C denotes
a fixed monster model of T .
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Simple theories

Definition
The SU-rank of tp(a/A) is defined by induction on α: if α = β + 1,

SU(a/A) ≥ α if there exists B ⊇ A such that
a 6̂ | B

A
and

SU(a/B) ≥ β; if α is a limit ordinal, SU(a/A) ≥ α if SU(a/A) ≥ β for
all β < α.

T is called supersimple if SU(p) < ∞ for every p ∈ Sx(A) , for all A and
finite x .

Definition
A formula φ(x , y) ∈ L is low in x if there exists k < ω such that for every
∅-indiscernible sequence (bi |i < ω), the set {φ(x , bi )|i < ω} is
inconsistent iff every (some) subset of it of size k is inconsistent. T is
low if every formula is.
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Simple theories

I’ll say that a theory is hypersimple if it is simple and it eliminates
hyperimaginaries, that is, on a complete type every type-definable
equivalence relation is an intersection of definable equivalence relations.

Definition

p ∈ S(A) is said to be orthogonal to q ∈ S(B) if
a |̂ b

C
whenever

tp(a/C ) is a non-forking extension of p and tp(b/C ) is a non-forking
extension of q.

T is called unidimensional if any two non-algebraic types are
non-orthogonal.
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Unidimensionality and supersimplicity

Problem (Shelah)
Is any unidimensional stable theory supersimple?

Theorem (Hrushovski - 1986)
Yes.

First, a proof in case L is countable [H0] and then in full generality [H1].
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Unidimensionality and supersimplicity - the simple case

Theorem (S. - 2003)
A small simple unidimensional theory is supersimple [S3].

Theorem (Pillay - 2003)
A countable hypersimple low unidimensional theory is supersimple.

(proved in [P] with additional assumption that removed later.)

In this talk I’ll give an overview of the following new result [S4]:

Theorem (S. - 2008)
A countable hypersimple unidimensional theory is supersimple.
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Analyzability - basic notions

From now on assume T is a hypersimple theory and work in Ceq. Let
p ∈ S(A) and let U be an A-invariant set.

We say that p is (almost-) U-internal if there exists a realization a of p

and there exists B ⊇ A with
a |̂ B

A
such that a ∈ dcl(Bc̄)

(respectively, a ∈ acl(Bc̄) ) for some tuple c̄ of realizations of U .

We say that p is (almost-) analyzable in U in α steps if there exists a
sequence I = (ai |i ≤ α) ⊆ dcl(aαA), where aα |= p, such that
tp(ai/A ∪ {aj |j < i}) is (almost-) U-internal for every i ≤ α.

Fact
Assume T is a hypersimple unidimensional theory, p is non-algebraic, and
U is unbounded. Then
1) for a |= p there exists a′ ∈ dcl(Aa)\acl(A) such that tp(a′/A) is
U-internal.
2) p is analyzable in U .
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Analyzability - basic notions

We say that the SU-rank of U is ≤ α, and write SU(U) ≤ α, if
Sup{SU(p)|p ∈ S(A), pC ⊆ U} ≤ α.

We say that U is supersimple if there exists α ∈ On such that
SU(U) ≤ α. We say that U has bounded finite SU-rank if SU(U) ≤ n for
some n < ω.

Fact
Assume p is almost-analyzable in U in finitely many steps and U is
supersimple. Then SU(p) < ∞.

A basic fact about internality and compactness yield:

Fact
Assume p ∈ S(A) is analyzable in an A-definable set U . Then p is
almost-analyzable in U in finitely many steps (in fact, p is analyzable in
U in finitely many steps, but this is harder).
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The forking topology

Finding directly a non-algebraic supersimple definable set seems
inaccessible. To resolve this, in [H0] and then in [P] new topologies have
been introduced. Indeed, the main role of these topologies in their proof
was the ability to express the relation ΓS(x) defined by

ΓS(x) = ∃y(S(x , y) ∧ y |̂ x )

as a closed relation for any Stone-closed relation S(x , y).

For the general case this topology will not be sufficient for producing a
supersimple set directly. However, we will use a variant of this topology
for a different purpose first:
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The forking topology

Definition
Let A ⊆ C. An A-invariant set U is said to be a basic τ f -open set over A
if there is a φ(x , y) ∈ L(A) such that

U = {a|φ(a, y) forks over A}.

Note that the family of basic τ f -open sets over A is closed under finite
intersections, thus form a basis for a unique topology on Sx(A). Clearly,
the τ f -topology refines the Stone-topology. If aclx(A) is infinite, the set
{a ∈ Cx | a 6∈ acl(A)} is an example of a τ f -open set over A that is not
Stone-open over A.

Definition
We say that the τ f -topologies over A are closed under projections (T is
PCFT over A) if for every τ f -open set U(x , y) over A the set ∃yU(x , y)
is a τ f -open set over A. We say that the τ f -topologies are closed under
projections (T is PCFT) if they are over every set A.
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Analyzability in the forking topology

The following result reduces the main problem to the problem of
producing an unbounded supersimple τ f -open set, provided that we know
PCFT.

Fact (S2)
Assume T is a simple theory with PCFT. Let p ∈ S(A) and let U be a
τ f -open set over A. Suppose p is analyzable in U . Then p is analyzable
in U in finitely many steps.
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Unidimensionality, EPFO and PCFT

Recall the following notion from [BPV].

Definition
We say that the extension property is first-order in T (I’ll say T is EPFO)
if for every formulas φ(x , y), ψ(y , z) ∈ L the relation Qφ,ψ defined by:

Qφ,ψ(a) iff φ(x , b) doesn’t fork over a for every b |= ψ(y , a)

is type-definable (here a can be an infinite tuple from C whose sorts are
fixed).

Remark
Note that if T is EPFO then T eliminates ∃∞. Thus by Shelah’s fcp
theorem we get that a stable theory with EPFO has the nfcp. The
converse is also true. This suggests an analogue notion for simple
theories. If T is low and EPFO then we say T has the wnfcp [BPV].
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Unidimensionality, EPFO and PCFT

Fact (S1)
Let T be a simple unidimensional theory. Then T eliminates ∃∞.

Corollary (Pillay)
A simple unidimensional theory is EPFO.

Lemma
Let T be a simple theory with EPFO. Then T is PCFT.

Corollary
Let T be a simple unidimenisonal theory. Then T is PCFT.

Corollary
Let T be a hypersimple unidimensional theory. Let p ∈ S(A) and let U be
an unbounded τ f -open set over A. Then p is analyzable in U in finitely
many steps. In particular, for such T the existence of an unbounded
supersimple τ f -open set over some set A implies T is supersimple.
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Existence of an unbounded supersimple τ f -open set

At this point it easy to conclude that any countable hypersimple low
unidimensional theory is supersimple. Indeed, the existence of such a set
follows by Hrushovski’s Baire categoricity argument [H0] applied to the
τ f -topology using PCFT:

Fix a non-algebraic sort s. W.l.o.g. there is p0 ∈ S(∅) with SU(p0) = 1.
For all ∅-definable functions f (x), g(y , z̄) let

Ff ,g = {a ∈ Cs | f (a) = g(b, c̄) 6∈ acl(∅) for some c̄ ⊆ pC0 and some b |̂ f (a) }.

By the basic property of the τ f -topology (ΓS(x) is τ f -closed whenever
S(x , y) is Stone-closed), each Ff ,g is τ f -closed. By unidimensionality,

Cs\acl(∅) =
⋃

f ,g

Ff ,g .
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Existence of an unbounded supersimple τ f -open set

By Baire categoricity theorem, there are f ∗, g∗ s.t. Ff ∗,g∗ has non-empty
τ f -interior. By PCFT, f ∗[Ff ∗,g∗ ] contains an unbounded τ f -open set
over ∅. As each d ∈ f ∗[Ff ∗,g∗ ] is internal in p0, f ∗[Ff ∗,g∗ ] has finite
SU-rank (in fact, bounded finite SU-rank).

The reason this argument works is that the τ f -topology in a low theory is
a Baire space (as basic τ f -open sets are type-definable).

Ziv Shami Tel Aviv University Unidimensional simple theories



Existence of an unbounded supersimple τ f -open set

The general case requires some new technologies. Generally, it is
achieved via the dividing line ”T is essentially 1-based” which roughly
means that every type is analyzable by types that are 1-based up to a
nowhere dense error in the sense of the forking topology:
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A dichotomy for projection closed topologies

Definition
A family

Υ = {Υx,A| x is a finite sequence of variables and A ⊂ C is small}

is said to be a projection closed family of topologies if each Υx,A is a
topology on Sx(A) that refines the Stone-topology on Sx(A), this family
is invariant under automorphisms of C and change of variables by
variables of the same sort, the family is closed under product by the
Stone spaces Sy (A) (where y is a disjoint tuple of variables), and the
family is closed under projections, namely whenever U(x , y) ∈ Υxy ,A,
∃yU(x , y) ∈ Υx,A.

Remark
There are two natural examples of projections-closed families of
topologies; the Stone topologies and the τ f -topologies of a theory with
PCFT.
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A dichotomy for projection closed topologies

From now on fix a projection closed family of topologies Υ.

Definition
1) A type p ∈ S(A) is said to be essentially 1-based by mean of Υ if for
every finite tuple c̄ from p and for every type-definable Υ-open set U
over Ac̄ , the set {a ∈ U| a 6̂ | Ac̄

acleq(Aa)∩acleq(Ac̄)
} is nowhere dense in

the Stone-topology of U .

2) Let V be an A-invariant set and let p ∈ S(A). We say that p is
analyzable in V by essentially 1-based types by mean of Υ if there exists
a sequence (ai | i ≤ α) ⊆ dcleq(Aaα) with aα |= p such that
tp(ai/A ∪ {aj |j < i}) is V -internal and essentially 1-based by mean of Υ
for all i ≤ α.

Example
The unique non-algebraic 1-type over ∅ in algebraically closed fields is
essentially 1-based by mean of the Stone-topologies but not by mean of
the τ f -topologies.

Ziv Shami Tel Aviv University Unidimensional simple theories



A dichotomy for projection closed topologies

Theorem
Let T be a countable hypersimple theory. Let Υ be a projection-closed
family of topologies. Let p0 be a partial type over ∅ of SU-rank 1. Then,
either there exists an unbounded finite-SU-rank (possibly with no finite
bound) Υ-open set, OR every type p ∈ S(A), with A countable, that is
internal in p0 is essentially 1-based by mean of Υ.
In particular, if T is in addition unidimensional, either there exists an
unbounded finite SU-rank Υ-open set, or every p ∈ S(∅) is analyzable in
p0 by essentially 1-based types by mean of Υ.
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Stable SU-rank

Definition
Let a ∈ C, A ⊆ B ⊆ C. We say that a is stably-independent from B over

A and write
a |̂s B

A
if for every stable φ(x , y) ∈ L, if φ(x , b) is over

B and a′ |= φ(x , b) for some a′ ∈ dcl(Aa), then φ(x , b) doesn’t fork over
A.

Definition
1) For a ∈ C and A ⊆ C the SUse-rank is defined by induction on α: if
α = β + 1, SUse(a/A) ≥ α if there exist B1 ⊇ B0 ⊇ A such that
a 6̂ |s B1

B0
and SUse(a/B1) ≥ β; for limit α, SUse(a/A) ≥ α if

SUse(a/A) ≥ β for all β < α.

2) Let U be an A-invariant set. We write SUse(U) = α (the SUse-rank of
U is α) if Max{SUse(p)|p ∈ S(A), pC ⊆ U} = α. We say that U has
bounded finite SUse-rank if for some n < ω, SUse(U) = n.
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Stable SU-rank

Remark
Note that for all a ∈ C and A ⊆ B ⊆ C:

1) SUse(a/B) ≤ SUse(a/A),

2) SUse(a/A) ≤ SU(a/A),

3) SUse(a/A) = 0 iff a ∈ acl(A).

Lemma
Let T be simple and assume Lstp = stp over sets. Then |̂s is
symmetric.
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Existence of an unbounded τ f
∞-open set of bounded finite

SUse-rank

Definition
The τ f

∞-topology on S(A) is the topology whose basis is the family of
type-definable τ f -open sets over A.

By the dichotomy theorem and the previous corollary it is not hard to
conclude:

Lemma
Let T be a countable hypersimple unidimensional theory. Assume there is
p0 ∈ S(∅) of SU-rank 1 and there exists an unbounded τ f

∞-open set of
bounded finite SUse-rank that is over a finite set. Then T is supersimple.
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Existence of an unbounded τ f
∞-open set of bounded finite

SUse-rank

A Baire categoricity argument using an ”independence relation” like
|̂s instead of |̂ seemed very natural but doesn’t seem to work.

The problem is that we need the SUse-rank (or some variant of it) to be
preserved in free extensions.
The solution of this obtained by analyzing generalizations of local
versions of sets of the form:

Uf ,n = {a ∈ Cs | SUse(f (a)) ≥ n}

where n < ω and f is a ∅-definable function.
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τ̃ f -sets

Definition
A relation V (x , z1, ...zl) is said to be a pre-τ̃ f -set relation (of degree l) if
there are θ(x̃ , x , z1, z2, ..., zl) ∈ L and φi (x̃ , yi ) ∈ L for 0 ≤ i ≤ l such
that for all a, d1, ..., dl ∈ C we have

V (a, d1, ..., dl) iff ∃ã [θ(ã, a, d1, d2, ..., dl)∧
l∧

i=0

(φi (ã, yi ) forks over d1d2...di )]

(for i = 0 the sequence d1d2...di is interpreted as ∅).
Note that if T is PCFT then V is a pre-τ̃ f -set relation of degree 0 iff V
is a τ f -open set.

Definition
1) A τ̃ f -set over ∅ is a set of the form

U = {a| ∃d1, d2, ...dl V (a, d1, ..., dl)}

for some pre-τ̃ f -set relation V (x , z1, ...zl).
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τ̃ f -sets

Remark
By symmetry of |̂s , Uf ,n is a union of τ̃ f -sets for all f , n.

The main tool for producing an unbounded τ f
∞-open set of bounded

finite SUse-rank is the following theorem. It says that any minimal
unbounded fiber of an unbounded τ̃ f -set is a τ f -open set:

Theorem
Assume T is simple and EPFO. Let U be an unbounded τ̃ f -set over ∅.
Then there exists an unbounded τ f -open set U∗ over some finite set A∗

such that U∗ ⊆ U . In fact, if V (x , z1, ..., zl) is a pre-τ̃ f -set relation such
that U = {a|∃d1...dlV (a, d1, ..., dl)}, and (d∗1 , ..., d∗m) is any maximal
sequence (with respect to extension) such that
∃dm+1...dlV (C, d∗1 , ..., d∗m, dm+1, ..., dl) is unbounded, then

U∗ = ∃dm+1...dlV (C, d∗1 , ..., d∗m, dm+1, ..., dl)

is a τ f -open set over d∗1 ...d∗m.
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τ̃ f -sets

Building on the previous theorem we show the existence of the required
set. This completes the proof of the main result.

Theorem
Let T be a countable simple theory with EPFO. Let s be a sort such that
Cs is not algebraic. Assume for every a ∈ Cs\acl(∅) there exists
a′ ∈ dcl(a)\acl(∅) such that SUse(a

′) < ω. Then there exists an
unbounded τ f

∞-open set of bounded finite SUse-rank that is over a finite
set.

It is easy to conclude:

Corollary
Let T be a countable theory with nfcp. Let s be a sort such that Cs is not
algebraic. Assume for every a ∈ Cs\acl(∅) there exists a′ ∈ dcl(a)\acl(∅)
with SU(a′) < ω. Then there exists a SU-rank 1 definable set.

Corollary
A countable hypersimple unidimensional theory has the wnfcp.
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