ESF Synthetic Biology ECSB II – Design, programming and optimization of biological systems

San Feliu de Guixols, 29 March – 03 April 2009

### Vesicles as cellular models: from self-reproduction to semi-synthetic minimal cells

<u>Pasquale Stano</u>, and Pier Luigi Luisi Biology Department - University of RomaTre



Approaches to the Bioengineering of Synthetic Minimal Cells







### WHY MINIMAL CELLS?

- Autopoiesis and the logic of life
- Vesicles (liposomes) as cellular models
- Semi-synthetic minimal cells

#### UNDERSTANDING LIFE AT THE CELLULAR LEVEL

### HOW DOES A CELL WORK?

A cell is defined by a physical boundary which allows the assimilation of nutrients/energy from the outside; the cell is able to self-maintainance and self-generation owing to the activity of the cell within its boundary.

life "here and now"

### autopoietic systems

"an autopoietic system is able to self-generate owing to a reaction network taking place within its own boundary"

Varela, et al. (1974).

### AUTOPOIESIS stems from the Greek auto = self; poiesis = produce



- ➤ self-bounded
- self-maintenance(self-identity)
- ➤ "cognition"

The organizational pattern remains constant. The material components that realize such pattern change.

Despite the chemical transformations of the parts, the whole is conserved!

Is it possible to realize simple autopoietic systems in the laboratory? The **chemical implementation** of autopoiesis started about 18 years ago with a concept paper *[Luisi & Varela, OLEB (1990)]* and later developped experimentally in several ways.



The **self-reproduction of vesicles** is a pre-requisite for studies of more complex **core-and-shell reproduction** 

#### Self-reproduction of supramolecular structures – List of precursors

|                    | In aqueous phase      |                                                                                                                                                                         | In apolar phase            |
|--------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|                    | High pH<br>(micelles) | Intermediate pH<br>(vesicles)                                                                                                                                           | Reverse micelles           |
| c <sup>0:0</sup>   |                       | Bloechliger et al., 1998<br>Lonchin et al., 1999<br>Berclaz et al., 2001a,b<br>Cheng & Luisi, 2003<br>Rasi et al., 2003a,b<br>Stano et al., 2006                        |                            |
|                    | Bachmann et al., 1992 | (Schimdli et al., 1991)<br>Luisi et al., 1993<br>Bachmann et al., 1994                                                                                                  | Bachmann et al., 1990,1991 |
|                    |                       | Luisi et al., 1993,1994<br>Walde et al., 1994a,b<br>Wick et al., 1995<br>Oberholzer et al., 1995<br>Morigaki et al., 1997<br>Zepik et al., 2001<br>Berclaz et al., 2001 |                            |
| CH <sub>2</sub> OH | Bachmann et al., 1991 |                                                                                                                                                                         | Bachmann et al., 1991      |



Bachmann, Luisi & Lang, Nature 1992

### Fatty acid vesicles CH<sub>3</sub>(CH<sub>2</sub>)<sub>n</sub>COOH



It has been suggested that fatty acid vesicles may have played an important role in the origin of life.

Fatty acids have isolated from carbonaceous chondrite meteorites (Murchison), and it has been suggested that they can be formed (with an iron-based catalyst) from CO and H<sub>2</sub>

giant oleate vesicles

#### Self-reproduction of oleate vesicles



### Self-reproduction of oleate vesicles



### Self-reproduction of w/o droplets



#### Time interval: 3 s

**Fiordemondo and Stano, ChemBioChem 2007** 

#### CORE AND SHELL SELF-REPRODUCTION



... moreover, core and shell reproduction should be functionally coupled...

### A road map to the minimal cell



#### **Minimal cells in origins of life scenario**



### The notion of the Minimal Cell:

The **Minimal Cell** is a cell-like compartment containing the minimal and sufficient number of components (i.e., to perform minimal functions) in order to be "**alive**"



- self-maintenance (& self-bounding)
- self-reproduction
- possibility to evolve

## The semi-synthetic minimal cell

- minimal genome
- minimal metabolism
- minimal size
- (functional) models for early cells

Luisi, Ferri and Stano, Naturwissenschaften 2006

### SEMI-SYNTHETIC MINIMAL CELLS



#### **Operative point of view**

#### A combination of:

-cell-free/in vitro systems

- liposome technology

# Protein biosynthesis as a paradigm of cellular metabolism



A molecular kit of 36 purified enzymes, ribosomes, t-RNAs, and low molecular weight compounds, which synthesize proteins starting from the corresponding DNA **Shimizu et al. Nature 2001** 

#### The state of the art (March 2009)

| Year | Authors                | Results                                                                                                     |
|------|------------------------|-------------------------------------------------------------------------------------------------------------|
| 1999 | Oberholzer et al.      | Poly(Phe) synthesis in vesicles<br>(freeze-and-thaw/EDTA)                                                   |
| 2001 | Yu et al.              | GFP expression in vesicles<br>(dehydration-rehydration/RNase)                                               |
| 2002 | Oberholzer and Luisi   | EGFP expression in vesicles<br>(injection method/EDTA)                                                      |
| 2003 | Nomura et al.          | rsGFP expression in giant vesicles (GV)<br>(natural swelling method/protease K)                             |
| 2004 | Ishikawa et al.        | T7 RNA polymerase and GFP expression in vesicles<br>(dehydration-rehydration/RNase)                         |
| 2004 | Noireaux and Libchaber | α-hemolysin and EGFP expression in GV<br>(oil-to-water spin extraction)                                     |
| 2006 | Sunami et al.          | GFP expression in vesicles; PURESYSTEM; FACS select.<br>(dehydration-rehydration/RNase)                     |
| 2007 | Murtas et al.          | EGFP expression in vesicles; PURESYSTEM<br>(hydration/RNase)                                                |
| 2008 | Kita et al.            | Q $\beta$ -replicase and $\beta$ -galactosidase expression in VET400 vesicles; PURESYSTEM (hydration/Rnase) |
| 2008 | Kuruma et al.          | Expression of two membrane proteins inside large vesicles; PURESYSTEM (hydration/RNase)                     |
| 2009 | Souza et al.           | EGFP expression inside 200 nm vesicles, PURESYSTEM<br>(extrusion or injection/RNase, protease, EDTA)        |

#### **EXPRESSION OF GFP INSIDE SMALL VESICLES**



Injection method: small vesicles form spontaneously within the mixing time. Solutes are co-entrapped inside vesicles.

Souza, Stano and Luisi, 2009

# What is the minimal vesicle size compatible with internal protein biosynthesis?



Souza, Stano and Luisi, 2009



#### Souza, Stano and Luisi, 2009





Nomura et al. ChemBiochem 2003

### Minimal Cell: Synthesis of lipids from within



Yutetsu Kuruma

Enzymatic synthesis of the lipids from within and autopoietic growth.

#### Glycerophospholipids metabolism





#### Table 1 Phospholipid compositions of liposome

| Lipid composition (mol)                        | Conc. (mM) | Synth. | Encap. | Act.             |
|------------------------------------------------|------------|--------|--------|------------------|
| POPC                                           | 200        | ++     | +++    | -                |
| POPC/POPG (80:20)                              | 200        | +      | +      | +                |
| Polar lipid extract (E. coli)                  | 1 mg/mL    | ±      | -      | +++              |
| Polar lipid extract/POPC (50 <sup>a</sup> :50) | 200        | +      | +      | +                |
| POPE/POPG/Brij35 (76.5:10.9:12.6)              | 50         | +      | -      | Not tested       |
| POPC/POPE/POPG/cardiolipin                     | 200        | ++     | ++     | +++ <sup>b</sup> |
| (50.8:35.6:11.5:2.1)                           |            |        |        |                  |
| No lipid                                       | -          | +++    | -      | -                |

### Enzymatic production of lipids



Kuruma, Stano et al., BBA 2008