Engineering of Tunnels in Proteins with Buried Active Sites

Jiri Damborsky

Protein Engineering Group Masaryk University, Brno, Czech Republic

Lock-key model

"To use a picture, I would like to say that enzyme and glucoside have to fit to each other like a lock and key in order to exert a chemical effect on each other."

E. Fischer, 1894

Lock-key model

Internet sources

Outline

New concept – keyhole-lock-key

Tools – CAVER and HOTSPOT WIZARD

Case – design of efficient biocatalyst

New concept

- haloalkane dehalogenases
- evolutionary analysis
- identification of hot spots
- construction exhaustive set of mutants
- kinetic characterization
- multivariate statistical analysis

Haloalkane dehalogenase

Evolutionary analysis of functional sites

10 substitutions in 14 proteins

Amino acids residues of LinB

L177 located in tunnel

Principal component analysis

Chaloupkova *et al.* J. Biol. Chem. 278: 52622 2003

Keyhole-lock-key model

Damborsky & Brezovsky Curr. Opin. Biol. Chem. in press

Implications for cell biology

two-level discrimination of ligands
discrimination based on protein dynamics
elimination of non-productive complexes
enhanced evolvability of enzymes

Implications for synthetic biology

optimization of elements for biorecognition,
 biosensing, bioconjugation & biocatalysis

- engineering affinity
- engineering catalytic efficiency
- engineering selectivity
- engineering orthogonality

Software tools

CAVER – automated calculation of tunnels in proteins and nucleic acids

HOTSPOT WIZARD – automated prediction of hot spots for mutagenesis

Software CAVER

Software CAVER

News 09/03/2009 10:52:24 CAVER plugin 2.0 v0.003

CAVER - secure caving in the world of biomolecules ...

CAVER provides rapid, accurate and fully automated calculation of pathways leading from buried cavities to outside solvent in protein structures. Study of these pathways is important in drug design and molecular enzymology.

CAVER facilitates analysis of any molecular structure including proteins, nucleic acids, inorganic materials, and is available as online version or PyMOL plugin.

CAVER Viewer enables efficient visualization of calculated pathways and can be run online using Java Web Start technology.

Unique IPs: 5110 Registered users: 1530

1530

Petrek et al., BMC Bioinformatics 7: 316 2006

Software CAVER 2.0

Software CAVER 2.0

http:// loschmidt.chemi.muni.cz/caver/

Software HOTSPOT WIZARD

Software HOTSPOT WIZARD

🕹 Result - Mozilla Firefox	_ 8 ×
Soubor Úpr <u>a</u> vy Zobrazit Historie Zálgžky Nástroje Nápo <u>v</u> ěda	
	_
Select - select - v center	
-select- Rende all on thick thin only off	
Color s interesting	
Z Tunnek 3	
A average	
1cv2 To distion	
110 120 130 140 150	
LVVHD NGSALGFD WARRHRERVQGIAYMEATANPIEWADF PEQDRDLFQA	
160 170 180 190 200	
TLSUPRQIPIAGTPADVVAIARDYAGULSESPIPKLFINAEPGALTTGRM	
RDFCRT@PNOTEITVAGAHFIQEDSPDEIGAAIAAFVRRLRPA	
L Active Pocket and Tunnel	
146 Conservation grade 1, variable 5 世 , 4 Q, 3 D, 3 P, 2 A, 2 F, 2 K, 1 G, 1 I, 1 L, 1 M, 1 N, 1 R, 1 S, 1 T, 1 V	
143 F conservation grade 1, variable	
1.D, 1.G, 1.1	Imol
147 D conservation grade 3, variable	
uno script terminateu	0:88

http:/loschmidt.chemi.muni.cz/hotspotwizard/

Case

1,2,3-trichloropropane
identification of tunnels by CAVER
analysis of ligand release by simulations
mutations by focused directed evolution
screening by biochemical assay
characterization by transient kinetics

degradable (aerobic)

difficult

impossible

1,2,3-Trichloropropane

Directed evolution

¹Bosma *et al.* Appl. Environ. Microbiol. 68: 3582 2002 ²Gray *et al.* Adv. Synth. Catal. 343: 607 <u>2001</u>

Analysis of tunnels by CAVER

Banas *et al.* J. Comp. Aid.-Mol. Des. 20: 375 2006

Modeling of ligand release by computer simulation

Rational design of tunnels

Modification of tunnels by focused directed evolution

- Site-directed mutagenesis
- Saturated mutagenesis

Mutant	C176Y	W141X I135X V245X L246X
А	\checkmark	
В	\checkmark	
С	\checkmark	
D	\checkmark	
E	\checkmark	
F	\checkmark	

Constructs with modified tunnels

Catalytic efficiency of constructs

Protein variant

Desolvation of active site pocket

Conclusions

Keyhole-lock-key – new concept for catalysis by enzymes with buried sites

CAVER & HOTSPOT WIZARD – software tools for protein engineering

Engineering tunnels – optimized catalytic and biorecognition elements for SB

Collaborators

Modelling

- □ Jiri Sochor (Masaryk University, Czech Republic)
- Michal Otyepka (University Palackeho, Czech Republic)
- Rebecca Wade (EML, Germany)

Experiments

- Martin Hof (Heyrovsky Institute, Czech Republic)
- Yuji Nagata (Tohoku University, Japan)

Genetic team

Petra

Ivana

Drienovská

Táňa

Martina

Kinetic team

Pavel Dvořák

Pavlová

Bioinformatics team

Eva Chovancová

Petr

Jaša

Rostislav Wolný

Pavelka

Jiří Matějíček

Peter Lisák

Michaela Melíková

Modelling team

Damborský

Jan

Brezovský

Biedermannová

Daniel

Martin Klvaňa

Lukáš

Khomaini Hasan

Polínek

Tomáš Mozga

Šárka

Zbyněk Prokop

Radka Chaloupková

Veronika Bidmanová Štěpánková

Loschmidz

Saboratorie

Martina Damborská Assistant

Monika Straková Technician

Jiří

