
Model validation and verification  

David Gilbert 

Systems Biology Research Group 
School of Information Science Computing and Mathematics 

Brunel University, UK 



Summary 

•  In this tutorial we describe some uses of model 
checking for Synthetic Biology. 

•  Many of these ideas originated in the context of 
research in Systems Biology. 

•  Special thanks to Robin Donaldson, University of 
Glasgow, who developed the MC2 model 
checker (www.brc.dcs.gla.ac.uk/software/mc2/) 
and created the MC2 model checking slides in 
this presentation. 
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Model 
•  A model  

–  formal representation of the real world 
–  simplified abstract view of the complex reality. 

•  A simulation: implementation of a model over time.  

•  To design: the process of originating and developing a 
plan for a product 

•  A design: (Final) plan, e.g. model,  
description, for the product 
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Validation & verification 
•  Validation – ‘You built the right product?’. 

–  Product / system accomplishes its intended 
requirements. 

–  Model / simulation are accurate representations of the 
real world 

•  Verification -  ‘You built the product right?’. 
–  System complies with its specification 
–  Model / simulation accurately represent the 

specifications 
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Synthetic biology development cycle 
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modify 

Model / check Biosystem 
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Describing experimental data 

•  Biologists will often talk in qualitative or semi-
quantitative language (trends). 

–  “this protein peaks after 5 minutes, then falls to half 
concentration” 

–  Often quite certain about time, 

–  But not about concentrations 
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0      10     20      40     80 min stimulation 

pERK1/2,  +EGF 

pERK1/2,  + BXBER/4HT 

U0126 added 

Lab data versus simulations 

Simulation Experiment 

David Gilbert ECSBII 2009 8 



David Gilbert ECSBII 2009 9 

Properties… 

Examples: 

•  After 100 seconds the concentration of Protein1 is stable 

•  Protein1 peaks and falls 
•  Protein1 peaks and stays constant 

•  Protein1 peaks before Protein2 

•  Protein1 oscillates 4 times in 5,000 seconds 
•  Molecules of Protein2 are required for molecules of 

Protein1 to be created 



Model Checking 
In a sentence: 
•  “Formally check whether a model of a biochemical system does 

what we want” 

Components: 
•  A model   

–  the current description of a biochemical system of interest 

•  A property 
–  a property which we think the system should have 

•  A model checker  
–  a program to test whether the model has the property 
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Model Checking  
Biochemical Pathways 
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Model Checker 

Pathway Model 

Property 
Eg, “Order of peaks is;  RafP,  

MEKPP, ERKPP” Yes/no or  
probability 

David Gilbert ECSBII 2009 



What can we do with model checking? 
•  Model validation: 

–  Show that your model of the pathway matches the lab data 
–  Might have a high probability of doing what you want, but doesn’t always do it! 

•  Model analysis:  
•  In a collection of variants of a model (e.g., in silico gene knock-outs), which 

models show a certain behavior?  (loss of oscillations…) 
•  Model development: 

–  If the model doesn’t do what we want, change the model automatically until it 
does! (parameters, structures,…) 

•  Model finding: 
–  Many models in a database, can use model checking to query the database 
–  “Give me all the models in the database which oscillate” 

•  Biosystem verification: 
–  Does the constructed system do what we intended? 
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To formally express time 
properties we use a temporal logic 

"I am hungry.”   
"I am always hungry", "I will eventually be hungry",  
"I will be hungry until I eat something”. 
Linear time logics restricted to single time line.  
Branching logics can reason about multiple time lines.  
“There is a possibility that I will stay hungry forever.”  
“There is a possibility that eventually I am no longer hungry.” 
Various logics :   

–  Computational Tree Logic (CTL) 
–  Continuous Stochastic Logic (CSL) 
–  Linear-time Temporal Logic (LTL) 

each with different expressivity. 



Qualitative 

Stochastic Continuous 

Approxima)on 

Molecules/Levels 
CTL, LTL 

Molecules/Levels 
Stochastic rates 

CSL 

Concentrations 
Deterministic rates 

LTLc 

Approxima)on  

DiscreteState Space Continuous State Space 

Time-free 

Timed,  
Quantitative 

Gilbert, Heiner and Lehrack. ``A Unifying Framework for Modelling and Analysing Biochemical 
Pathways Using Petri Nets.”  Proc CMSB 2007 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Models 

•  Qualitative: Petri nets,… 

•  Continuous: ODEs, Continuous Petri nets 

•  Stochastic: Stochastic process algebras, 
Stochastic Petri nets, Chemical master 
equations, P-systems, (Gillespie)… 
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Enzymatic reaction models 
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A,B: Conventional notation of the chemical reactions and kinetic constants.  C,D: ODE.  E,F: Discrete Petri 
net description. G: Stochastic process algebra PEPA.  H: Stochastic π-calculus  



PLTL language 
•  Probabilistic logic called Probabilistic Linear-time Temporal Logic 

(PLTL) 

•  Main PLTL operators: 

 G (P)   : P always happens 

 F (P)   : P happens at some time 

 X (P)   : P happens in the next time point 

 (P1) U (P2)  : P1 happens until P2 happens 

 P1 { P2 }  : P1 happens from the first time P2 happens 
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Qualitative to quantitative 
descriptions in PLTL 

•  Qualitative:  
Protein rises then falls  
P=? [ ( d(Protein) > 0 ) U ( G( d(Protein) < 0 ) ) ]  

•  Semi-qualitative:  
Protein rises then falls to less than 50% of peak concentration  
P=? [ ( d(Protein) > 0 ) U ( G( d(Protein) < 0 ) ∧ F ( [Protein] < 0.5 ∗ max[Protein] ) ) ]  

•  Semi-quantitative:  
Protein rises then falls to less than 50% of peak concentration by 60 
minutes  
P=? [ ( d(Protein) > 0 ) U ( G( d(Protein) < 0 ) ∧ F ( time = 60 ∧ Protein < 0.5 ∗ 
max(Protein) ) ) ]  

•  Quantitative:  
Protein rises then falls to less than 100µMol by 60 minutes  
P=? [ ( d(Protein) > 0 ) U ( G( d(Protein) < 0 ) ∧ F ( time = 60 ∧ Protein < 100 ) ) ]  
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PRISM 
Probablistic model checker 

•  Specification language: PRISM language (based on reactive modules language) 
•  Supports 3 types of models 

–  Discrete time Markov chains (DTMCs) 
–  Continuous time Markov chains (CTMCs) 
–  Markov decision processes (MDPs) 

•  Logic: PCTL or CSL 
•  Symbolic 
•  Communication via shared events 
•  Synchronous execution (apart from MDPs) 

Quantitative analysis using costs/rewards 
Can run experiments 

Has been used to verify: signalling pathways in systems biology, PIN block  
attacks, communications protocols (e.g. bluetooth, SMAC), aviation security 
 procedures 



Analytical vs Simulative 
 Model Checking 

•  Analytical: 
–  Exact probabilities & prove properties 
–  A model state is an association of #molecules to each of the species 

•  Protein1 has 10 molecules & Protein2 has 20 molecules 
–  Analytical assesses every state that the model can be in (reachable states) 
–  State space can grow even worse than exponentially with increasing 

molecules 
–  Stochastic model checking with even as little as 12 molecules can be 

impossible with today’s technology 

•  Simulative: 
–  Instead of analysing the constructed state space, analyse simulation outputs 
–  Simulate the model X times and check these simulations 
–  Simulation run = finite path through the state space 
–  Can’t prove probabilities 
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Simulation-based Model Checking  
Biochemical Pathways 
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Model Checker 

Time-series Data 

Property 
Eg, “Order of peaks is;  RafP,  

MEKPP, ERKPP” Yes/no or  
probability 

Model Lab 
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Simulative model checking 
•  In-line: check the observations as they arrive 

–  Requires complex computational machinery: ‘combine’ 
simulator & model checker 

–  Good for biochemical observations 
–  Don’t always need to finish the experimental run 

•  Off-line: check the observations after all have 
been generated 
–  Easier to implement computationally (simulate then 

check) 
–  Need to always define when to ‘stop’ generating 

observations 
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Monte Carlo Model Checker 
•  Developed an offline Monte Carlo Model Checker for PLTLc 

properties, MC2(PLTLc) for short. 

•  Operates on a finite set of simulations – simulative approach 

•  Typically, many stochastic simulations to approximate 
probabilities  

–  Approximate probability = fraction of simulations which satisfy the property 
over the #simulations 

•  Monte Carlo approximation – 2 approximations made: 
–  finite number of simulations 
–  Simulations of finite length 
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Monte Carlo Model Checker 
•  The set of time series data can be: 

–  Set of stochastic runs 
–  A single continuous run 
–  A parameter scan 
–  Lab data! 

•  We could use simulation output from; 
–  ODE, SDE, CTMC, Gillespie, hybrid approaches, multi-

cellular simulation, open models 

•  Or experimental data from the wet lab 
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5 

P=?[  F( X > 5 )  ] 

=> P = 1 

X 

MC2 with ODE Output 
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5 

P=?[  F( X > 5 )  ] 

=> P = 1 

X 

MC2 with Gillespie Output 
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5 

P=?[  F( X > 5 )  ] 

=> P = 4/6 

X 

MC2 with Gillespie Output 
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Why MC2? 

•  MC2 
–  Probabilities are derived from fraction of #finite simulation outputs 

satisfying property 
–  Provides an approximation of the probability because 

•  Finite set of simulation outputs and simulation outputs are finite size 

•  PRISM 
–  Exact probabilities are produced but much higher cost 
–  Exact, need to construct the state-space 
–  State-space is exponential in #levels and #protein types.  
–  Gilbert et al. (2007) can only use up to 8 concentration levels in 

PRISM – with MC2 we can use easily 4,000.  

Gilbert et al. (2007), “A unifying framework for modelling and analysing biochemical pathways using Petri nets”. In 
Proc. CMSB 2007, pages 200–216. 
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Why MC2? 

•  PLTL (MC2) is more theoretically correct than CSL (PRISM) 
for model checking on simulation outputs. 

•  No need to impose time-bounds on operators for efficiency 
as done in Gilbert et al. (2007): 

•  P=?[  (RafP = X) U<=100 (RafP > X) { RafP = X }  ] 

•  We perform model checking on our cluster.  Fast!   

•  Fast, but it is an approximation… 

Gilbert et al. (2007), “A unifying framework for modelling and analysing biochemical pathways using Petri nets”. In 
Proc. CMSB 2007, pages 200–216. 
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Levchenko Model 
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Stochastic Analysis 
Check the property:   
“What is the probability that RafP will reach concentration X 

while MEKPP and ERKPP remain at 0?” 

P=?  [  (MEKPP = 0 ^ ERKPP = 0) U (RafP > X)  
   {RafP = 0 ^ MEKPP = 0 ^ ERKPP = 0}  ] 

David Gilbert ECSBII 2009 

4 LEVELS : 4 HOURS 
8 LEVELS : 24 HOURS 
16 LEVELS: ?? 

David Gilbert, Monika Heiner and Sebastian Lehrack (2007). A Unifying Framework for 
Modelling and Analysing Biochemical Pathways Using Petri Nets.  Proc CMSB 2007  
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Checking the property at varying levels 

Monika Heiner, David Gilbert, and Robin Donaldson (2008), Petri Nets for Systems and Synthetic Biology. In M 
Bernardo, P Degano, and G Zavattaro (Eds.): Formal Methods for Systems Biology SFM 2008, Springer LNCS 5016  
David Gilbert ECSBII 2009 



PLTLc language, specifics 
LTLc  [Fages et al.] - extension of LTL with numerical constraints.  

We extend Probabilistic LTL with numerical constraints : PLTLc. 

E.g.  
•  Free variable $X always greater than the concentration of Protein. 

 P=?  [  G( $X > [Protein] ) ] 

Model checking of PLTLc properties returns: 
-  Probability of behaviour: 

some value is always greater than concentration of protein 

-  The domain of free variable $X for which the behaviour holds true 
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Fages et al. “On the Analysis of Numerical Data Time Series in Temporal Logic.” In Proc. 
CMSB2007, pages48–63. LNCS/LNBI4695, Springer,2007.  
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PLTLc language 
•  Continuous model with [Protein]  between 0…8 in simulation output 

•  P=?  [  G( $X > [Protein] ) ] 

-  Probability =1 : there is a value always greater than [Protein] 
-  Domain of $X is 9…inf : these are the values always greater than [Protein] : 

•  Probabilistic language, interpret this as a probabilistic domain: 
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0   1   2   3   4   5   6   7   8   9   10   11   12   13       …                                   ∞ 

0   1   2   3   4   5   6   7   8   9   10   11   12   13       …                                  ∞ 
0   0   0   0   0   0   0   0   0   1    1     1     1     1                                              1 
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PLTLc language 
•  Stochastic model has varied behaviour, so probabilistic domain ranges 0…1. 

•  Could look something like: 
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0   1   2   3   4   5   6   7   8   9   10   11   12   13     …                                    ∞ 
0   0   0   0   0   0   0   0   0  0.1 0.2 0.67 0.78 1      …                                     1 
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Parameter estimation using the 
Monte Carlo Model Checker 

Con$nuous Brightman & Fell model: 

•  The EGF signal transducMon pathway produces 
transient Ras, MEK and ERK acMvaMon 
whereas NGF sMmulaMon produces sustained 
acMvaMon. 

•  Parameter V28 has the the highest probability 
of generaMng the desired behaviour, but 
requires 40‐fold increase in value  

36 

Brightman & Fell, FEBS LeW 2000.  “DifferenMal feedback regulaMon of the MAPK cascade 
underlies the quanMtaMve differences in EGF and NGF signalling in PC12 cells” 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Response with EGF vs. NGF signal 
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NGF 
Sustained activation 
of Ras, MEK and ERK 

EGF 
Transient activation of 

Ras, MEK and ERK 

Proliferation 
(cell division) 

PC12 cells 

Differentiation 
(neurite  

outgrowth) 
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Desired Behaviour in PLTLc 
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The desired (sustained) NGF behaviour of the pathway was written informally in the original paper.   

We can formalise it in PLTLc as: 

Sustained Ras: Active Ras peaks within 2 min to max 20% total Ras and stable between 5%..10%  
 P=? [ d(active Ras) > 0  U ( time ≤ 2 ∧ active Ras ≥ 0.15∗total Ras  

 ∧ active Ras ≤ 0.2∗total Ras ∧ ( d(active Ras) < 0)  
 U ( G( active Ras ≥ 0.05∗total Ras ∧ active Ras ≤ 0.10∗total Ras ) ) ) ]  

Sustained MEK: Active MEK peaks in 2 to 5 min and is stable between 40%..50% of peak value 
 P=? [ d(MEKPP) > 0 U ( time ≥ 2 ∧ time ≤ 5 ∧ d(MEKPP) < 0  

 U ( G( MEKPP ≥ 0.40∗max(MEKPP) ∧ MEKPP ≤ 0.50∗max(MEKPP)  ) ) ) ]  

Sustained ERK: Active ERK peaks in 2 to 5 min and is stable between 85%..100% of peak value 
 P=? [ ( d(ERKPP) > 0 ) U ( time ≥ 2 ∧ time ≤ 5 ∧ d(ERKPP) < 0  

 U ( G( ERKPP ≥ 0.85 ∗ max(ERKPP) ) ) ) ]  

Robin Donaldson and David Gilbert (2008). A Model Checking Approach to the Parameter EsMmaMon of Biochemical 
Pathways In proceedings CMSB 2008 (ComputaMonal Methods in Systems Biology). LNCS 5307/2008, pp269‐287 

David Gilbert ECSBII 2009 



Critical parameters 
CriMcal parameters can produce sustained 
acMvaMon of Ras, MEK or ERK. 

Used to give an idea which parameters to vary 

Method:  
‐  Vary the kineMc rate constant parameters in 
range ± 2 orders of magnitude from original 
value. 

‐  Perform 1,000 simulaMons using different 
values for each parameter, linearly spaced in 
the range   

‐  The ‘significance values’ are the fracMon of 
values in the range which give rise to sustained 
behaviour for each protein 

‐  Found through model checking 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Model construction 

Starting with the EGF (transient) model, construct the  
NGF (sustained) model by varying the values of the critical kinetic rate constants. 
I.e. minimise the distance of the model to sustained behaviour. 

Could vary the initial concentrations, or topologies (ongoing research). 

Genetic algorithm: 
•  Define a parameter space (±2 orders of magnitude for each parameter) 
•  Initialise a population of models randomly throughout parameter space 
•  For each generation of the algorithm: 

–  Perform genetic operations on binary representations of the models’ parameter 
values (crossover, mutation, reproduction) 

–  Evaluate all models’ fitness values using model checking – fitness is the distance 
to sustained behaviour 

–  Probabilistically select models to survive to the next generation based on their 
fitness value 

40 David Gilbert ECSBII 2009 

2000 models, 100 generations, 2.105 simulations/checks 



Fitness function using PLTLc 
Probability: 
•  Can optimise the probability of a behaviour, which works fine on stochastic models. 

–  On continuous models, the probability is boolean so not good in a fitness 
function – no gradient 

Free variables: 
•  Can use the free variables in a PLTLc behaviour, works for continuous or stochastic 

models. 
–  Can always get a numerical value for the fitness function, even in continuous 

models – good for search algorithm 

•  We specify the behaviour in PLTLc and at the same time characterise the ‘tail’ of 
the peak in a free variable. 

•  We have an idea of the desired behaviour of the tail and can calculate the distance, 
using the free variables, to give us a numerical value for the fitness function, 
whilst…. 

•  the behaviour in PLTLc enforces a peak at the right position. 
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Results 

•  Original model of the NGF signalling pathway varying V28  (doWed) 
•  Best model returned when varying the criMcal parameters (solid)  
•  CriMcal parameters without V28 (dashed).   

The best model returned when varying the criMcal parameters only required a 16‐fold increase in V28 
(compared with 40‐fold in original paper) 

Even possible to get similar behaviour without varying V28 

42 

•  Built a fitness funcMon for sustained Ras, MEK and ERK 
•  Ran the geneMc algorithm with 100 generaMons with results: 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A 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Checking Approach to the Parameter EsMmaMon of 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Pathways In proceedings CMSB 2008 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Biology). LNCS 5307/2008, 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Related work 

•  Francois Fages, Biocham. 

–  On a Continuous Degree of Satisfaction of 
Temporal Logic Formulae with Applications to 
Systems Biology Aurélien Rizk, Grégory Batt, 
François Fages and Syvain Soliman. Comptational 
Methods in Systems Biology CMSB'08 
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Model searching 
•  Query the database on the behaviour of the models 

•  SIMAP project has a database of MAPK pathway models 

•  We are using MC2(PLTLc) as a SQL for models of biochemical systems 

•  Also want to use it as a SQL for lab data 

•  For example, these questions 
–  “What are the models where ERK oscillates?” 
–  “Under what conditions does ERK not behave as we observe?” 
–  “What are the behaviours of the pathway not backed up by lab data?”  
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Model searching 
Peaks at least once  
(rises then falls below 50% max 

concentration) 
P>=1[  ErkPP <= 0.50*max(ErkPP) ∧ d(ErkPP) > 0 U ( ErkPP = 

max(ErkPP) ∧ F( ErkPP <= 0.50*max(ErkPP) ) )  ] 

•  Brown 
•  Kholodenko 
•  Schoeberl 

Rises and remains constant  
(99% max concentration) 
P>=1[ErkPP <= 0.50*max(ErkPP) ∧ ( d(ErkPP) > 0 ) U ( G(ErkPP >= 

0.99*max(ErkPP)) )  ] 

•  Levchenko 

Oscillates at least 4 times 
P>=1[  F( d(ErkPP) > 0 ∧ F( d(ErkPP) < 0 ∧ … ) )  ] 

•  Kholodenko 
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BioModel Engineering 
•  The science of designing, constructing and 

analyzing computational models of biological 
systems 

•  A systematic and powerful extension of earlier 
mathematical modeling approaches  

•  Applied in systems biology and synthetic 
biology. 

David Gilbert ECSBII 2009 46 

Rainer Breitling, David Gilbert, Monika Heiner, Richard Orton (2008). A structured approach for the engineering of 
biochemical network models, illustrated for signalling pathways. Briefings in Bioinformatics 

David Gilbert, Rainer Breitling, Monika Heiner, and Robin Donaldson (2009). An introduction to BioModel Engineering, 
illustrated for signal transduction pathways, 9th International Workshop, WMC 2008, Edinburgh, UK LNCS Volume 539, 

pp13-28 



BioModel Engineering 
•  Takes place at the interface of computing science, 

mathematics, engineering and biology.  
•  A systematic approach for designing, constructing 

and analyzing computational models of biological 
systems.  

•  Some inspiration from efficient software engineering 
strategies.  

•  Not engineering biological systems per se, but 
–  describes their structure and behaviour,  
–  in particular at the level of intracellular molecular processes,  
–  using computational tools and techniques in a principled way.  
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Management & development 
•  Database of models, behaviours, properties, … 
•  Model Version control system 
•  Model checking – properties 

•  Model behaviour checking: 
Do the model results match the experimental data?  
–  Yes: validation 
–  No: back to definition and check for errors 

•  Simple typos 
•  Wrong kinetics 
•  Over simplifications of processes 
•  Missing components from the model 
•  Incorrect parameter data 

•  Further validation – checking if system behaves correctly when 
things are varied: 
–  Over-express or knockout a component 
–  The model should be able to recreate this behaviour 



BioNessie –BioModel Engineering environment 
Xuan Liu 

•  SBML (Systems Biology Markup Language) enabled.  
•  Intuitive easy-to-use interface for biochemists & modellers.  Input biochemical 

equations. 
•  File storage in XML, SBML, text & graphics 
•  Platform Independent – Java 
•  Parallel processing - Efficient exploitation of available compute resources – multiple 

core and multiple CPUs, as well as Grid computing 
•  Editor, simulator, and analyser 
•  Model version control 
•  Kinetic law library creation & management 
•  Fast efficient ODE solver (stiff & non-stiff) 
•  (Stochastic solver) 
•  Parameter scanning 
•  Sensitivity analysis  
•  Parameter estimation using a genetic algorithm  
•  Advanced model checking (MC2 using PLTL) 
•  Module composition 
•  Relational database connectivity 
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Synthetic biology development cycle 
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validate 

construct 

verify 

construct 

verify 

construct 

modify 

modify 

Model Biosystem 
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