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The main purpose of my stay in the United States in October and November 2012 was to work on an
ongoing joint research project with Prof. Marek Biskup (UCLA) and Michele Salvi (TU Berlin). In
this project, we consider the Dirichlet energy that represents the total current flow in an electrostatic
resistor network if the potential is kept at a fixed voltage in a subset of the network. The particular
network we consider is the so-called random conductance model (RCM), where every edge in the lattice
Zd is assigned a random positive weight standing for the conductance between adjacent vertices. The
main goal of the project is to prove a central limit theorem (CLT) for the effective conductance over
a bounded set with prescribed boundary conditions if the volume of the set is large.

1. Introduction

Consider the lattice Zd and assign to any edge (x, y) connecting two neighboring sites x ∼ y a random
weight ωx,y ∈ [0,∞), subject to the symmetry condition ωx,y = ωy,x. The quantity ωx,y is referred to as
conductance, whereas its reciprocal is called resistance. Denote by N = {e1, . . . , ed} the canonical base
of Zd, i.e., the set of neighbors of the origin with nonnegative entries. We assume that (ωx,x+e)x∈Zd,e∈N
is a family of positive i.i.d. random variables, and we abbreviate ω(x, e) = ωx,x+e. Define the randomly
perturbed Laplacian ∆ω by

∆ωf(x) :=
∑

y∈Zd : y∼x

ωx,y(f(y)− f(x)). (1.1)

The large-scale behavior of this operator has been a central object of study for a long time. A very
common problem is the analysis of solutions to associated Poisson equations on large domains, where
the conductances are assumed to be periodic or ergodic. These are the most prominent problems
in discrete homogenisation theory. We will have a look at a related problem, namely the one of the
Dirichlet energy. For that purpose, let us assume that the conductances (ωx,y)x∼y∈Zd are distributed
according to some probability measure P satisfying

i) the ωx,y with x ∼ y ∈ Zd under P are i.i.d.

ii) there exists λ ∈ (0, 1) such that λ ≤ ωx,y ≤ 1
λ for all x ∼ y ∈ Zd almost surely w.r.t. P

(uniform ellipticity).

In particular, the conductances constitute a stationary ergodic environment under these assumptions.
Now consider the box ΛL = [0, L] ∩ Zd. For a function f : ΛL ∪ ∂ΛL → R, the Dirichlet energy
associated with the potential f is defined as

QL(f) =
∑

x∼y, {x,y}∩ΛL 6=∅

ωx,y
(
f(y)− f(x)

)2
.

We are interested in the so-called effective conductance

QtL = inf
{
QL(f) : f(z) = t · z ∀z ∈ ∂ΛL

}
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with t ∈ Rd. As is known from electrostatic theory,

QtL = QL(t · ψL)

where ψL = (ψ1
L, . . . , ψ

d
L) and ψiL : ΛL → R for i = 1 . . . , d is the unique function that satisfies

∆ωψiL = 0, on ΛL

ψiL(z) = zi, z ∈ ∂ΛL.

At least under the assumptions on the conductance distribution, it can also be shown that there
also exists a corresponding infinite-volume object, the so called harmonic coordinate ψ : Zd → Rd all
d components of which are harmonic everywhere on the lattice, that is, ∆ωψi(z) = 0 for z ∈ Zd.
Moreover, we may choose ψ such that ψ(0) = 0. For large L, it is known that

QtL ∼ QL(t · ψ) ∼ |t|2Lda

where

a = E
[∑
x∼0

ω0,x|ψ(x)|2
]

with E standing for the P-expectiation. The quantity a is referred to as effective conductivity constant
which accounts for the fact that on large scales ∆ω behaves in many ways like the continuous Laplacian
multiplied with this quantity, compare e.g. [B11]. When considering discrete differential equations
on the lattice w.r.t. the elliptic operator ∆ω, it is therefore of considerable importance to control the
fluctuations of QtL.

2. Current state of the research project

We have established a framework to prove a central limit theorem for the effective conductance QtL
which seems likely to admit an extension to a broader class of boundary conditions (e.g., mixed
Dirichlet-Neumann) and domains. The first step is to represent the deviation of QtL from its mean
by the Doob martingale we obtain by conditioning on the edges contributing to QtL. Here choosing
a stationary ordering of these edges is of vital importance. Each martingale increment admits a
representation in terms of the gradient of t ·ψL. In order to employ the martingale CLT, it is essential
to rely on the ergodicity of the environment and replace ψL by the shift-covariant full-lattice analogue
ψ. Effectively, this requires controlling the expectation of

L−d
∑
e

|t · ∇e(ψL − ψ)|4 = L−d
∑
e

|t · ∇e(χL − χ)|4, (2.1)

here the sum includes all edges in the box ΛL and the so called correctors χL resp. χ are given by

χL(z) = ψL(z)− z, χ(z) = ψ(z)− z.

A uniform estimate of the form

E
[
‖∇χL‖`p(ΛL)

]
. Ld (2.2)

for some p > 4 is needed to gain control over the expectation of (2.1) for L → ∞ by uniform p-
integrability. However, we have been able to show this only under a restriction to sufficiently small
ellipticity contrast, that is, for λ sufficiently close to 1. We have presented our result in the article A
central limit theorem for the effective conductance: I. Linear boundary data and small ellipticity con-
trasts which was published on the arXiv (http://arxiv.org/abs/1210.2371) recently. The purpose
of the visit to Los Angeles was to find a strategy to drop this additional requirement.

http://arxiv.org/abs/1210.2371
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3. Progress made during the stay

We were able to identify two different approaches towards establishing a uniform Lp-estimate in the
spirit of (2.2) that holds without the requirement of a sufficiently small ellipticity contrast.

The first one is limited to the case d ≥ 3 and uses one of the main results from the recent paper [GO11].
The authors show that a stationary version of the corrector χ (the statinary version obviously does
not have the property that it vanishes in zero) satisfies

E[|χ(0)|p] <∞ for all p ≥ 2. (3.1)

In addition, it is obvious that t · (ψiL−ψi) is the unique real function that is harmonic on Λ and agrees
with t · χ on the boundary ∂Λ. We have reason to believe that the regularity of χ on the boundary
extends to the full-box object by certain harmonicity properties.

The second strategy is a perturbative argument. It can be shown that the second derivative of the
finite-volume harmonic coordinate with regard to the value of a single conductance takes a purely
multiplicative form:

∂2

∂2ω(z, ej)
ψiL(x) = ∇(1)

ei ∇
(2)
ej G

ω
L(z, z)

∂

∂ω(z, ej)
ψiL(x) (3.2)

with GωL the corresponding finite-volume Green’s function. The double gradient of the Green’s function
in a diagonal point is quite well understood and monotonous in the conductances. By (3.2), we
are able to relate the impact that a large single-edge perturbation of the conductances has on the
harmonic coordinate by the corresponding effect of a small perturbation, independently of the vertex
in consideration. More precisely, if η is a conductance configuration that is zero except at the edge
(z, z + ej), where it is one, and a, b are positive numbers, we obtain the formula

ψiL(ω + bη, x)− ψiL(ω, x) = [ψiL(ω + aη, x)− ψiL(ω, x)]
Cz,j(b)

Cz,j(a)
. (3.3)

Here, the positive numbers Cz,j are given by

Cz,j(a) =

∫ a

0
exp

{∫ s

0
∇(1)
ei ∇

(2)
ej G

ω+tη
L (z, z) dt

}
ds (3.4)

and, in particular, are independent of x and i, thus (3.3) holds analogously for norms of ψiL. Choosing
b large and a so small that ω + aη is still within the range of small ellipticity contrast suggests that
regularity of the involved objects extends to broader ellipticity contrasts by iterative arguments.

4. Future collaboration and projected publication

Close collaboration between Marek Biskup, Michele Salvi and myself is going on on a continuous basis,
an additional meeting of the three collaborators in Europe is planned in the near future.

Finally, let me express my gratitude for the support the ESF provided for me in order to realize this
research project, which has been and continues to be of great importance for my career and education.

Berlin, November 2012 - Tilman Wolff
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