The period spent at UCD has brought the research to the following step forward in the investigated problem. We have identified a method for non independent samples that is able to apply for the type of data that we are given. Here is a short report of the method.

Let consider the Hamiltonian for R samples each long L

$$
\begin{equation*}
H_{N}\left(m_{1}, \ldots, m_{R}\right)=-N\left(\frac{J}{2 R^{2}} \sum_{l, s=1}^{R} m_{l} m_{s}+\frac{h}{R} \sum_{l=1}^{R} m_{l}\right) \tag{1}
\end{equation*}
$$

The joint probability is:

$$
\begin{equation*}
P\left(m_{1}, \ldots, m_{R}\right)=\sum_{\hat{\sigma}} \frac{e^{-H_{N}\left(m_{1}, \ldots, m_{R}\right)}}{Z}=\frac{1}{Z} \prod_{l=1}^{R} A_{m_{l}} e^{-H_{N}\left(m_{1}, \ldots, m_{R}\right)} \tag{2}
\end{equation*}
$$

Our aim is to identify J e h to maximise the joint probability. We have:

$$
\begin{equation*}
\ln P\left(m_{1}, \ldots, m_{R}\right)=\sum_{l=1}^{R} \ln \left(A_{m_{l}}\right)-H_{N}\left(m_{1}, \ldots, m_{R}\right)-\ln Z \tag{3}
\end{equation*}
$$

and the partial derivatives are

$$
\begin{align*}
& \frac{\partial \ln P\left(m_{1}, \ldots, m_{R}\right)}{\partial h}=\frac{N}{R}\left(\sum_{l=1}^{R} m_{l}-\frac{1}{Z} \sum_{m_{1}, \ldots, m_{R}} \prod_{l=1}^{R} A_{m_{l}} e^{-H_{N}\left(m_{1}, \ldots, m_{R}\right)} \sum_{l=1}^{R} m_{l}\right) \\
& \frac{\partial \ln P\left(m_{1}, \ldots, m_{R}\right)}{\partial J}=\frac{N}{2 R^{2}}\left(\sum_{l, s} m_{l} m_{s}-\frac{1}{Z} \sum_{m_{1}, \ldots, m_{R}} \prod_{l=1}^{R} A_{m_{l}} e^{-H_{N}\left(m_{1}, \ldots, m_{R}\right)} \sum_{l, s=1}^{R} m_{l} m_{s}\right) \tag{4}
\end{align*}
$$

Remembering that

$$
\begin{equation*}
\sum_{m_{1}, \ldots, m_{R}} \prod_{l=1}^{R} A_{m_{l}} e^{-H_{N}\left(m_{1}, \ldots, m_{R}\right)}=\sum_{\sigma} e^{-H_{N}(\sigma)} \tag{5}
\end{equation*}
$$

we have the maximum condition met when:

$$
\left\{\begin{array}{l}
\sum_{l=1}^{R} m_{l}=\left\langle\sum_{l=1}^{R} m_{l}\right\rangle_{B G}=R\left\langle m_{l}\right\rangle_{B G} \tag{6}\\
\sum_{l, s} m_{l} m_{s}=\left\langle\sum_{l, s} m_{l} m_{s}\right\rangle_{B G}=R\left\langle m_{l}^{2}\right\rangle_{B G}+R(R-1)\left\langle m_{l} m_{s}\right\rangle_{B G}
\end{array}\right.
$$

Then

$$
\left\{\begin{array}{l}
\left\langle m_{l}\right\rangle_{B G}=\frac{1}{R} \sum_{l=1}^{R} m_{l} \tag{7}\\
\left\langle m_{l}^{2}\right\rangle_{B G}+(R-1)\left\langle m_{l} m_{s}\right\rangle_{B G}=\frac{1}{R} \sum_{l, s} m_{l} m_{s}
\end{array}\right.
$$

The way the empirical data are related to h and J is, given that $\left\langle m_{1}\right\rangle_{B G}=\left\langle m_{2}\right\rangle_{B G}=$ $\cdots=\left\langle m_{R}\right\rangle_{B G}$,

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\left\langle m_{1}\right\rangle_{B G}=\mu \tag{8}
\end{equation*}
$$

where $\mu=\tanh (J \mu+h)$ By consequence:

$$
\begin{equation*}
\frac{\partial}{\partial h}\left\langle m_{1}\right\rangle_{B G}=\frac{\partial}{\partial h}\left\langle m_{2}\right\rangle_{B G}=\cdots=\frac{\partial}{\partial h}\left\langle m_{R}\right\rangle_{B G} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{\partial}{\partial h}\left\langle m_{1}\right\rangle_{B G}=\chi=\frac{1-\mu^{2}}{1-J\left(1-\mu^{2}\right)} \tag{10}
\end{equation*}
$$

where:

$$
\begin{align*}
\frac{\partial}{\partial h}\left\langle m_{1}\right\rangle_{B G} & =\frac{N}{R}\left(\frac{\sum_{\sigma} m_{1} e^{-H_{N}} \sum_{l=1}^{R} m_{l}}{Z}-\frac{\sum_{\sigma} m_{1} e^{-H_{N}} \sum_{\sigma} e^{-H_{N}} \sum_{l=1}^{R} m_{l}}{Z^{2}}\right) \tag{11}\\
& =\frac{N}{R}\left(\left\langle m_{1}^{2}\right\rangle_{B G}+(R-1)\left\langle m_{1} m_{l}\right\rangle_{B G}-R\left\langle m_{1}\right\rangle_{B G}^{2}\right) \tag{12}
\end{align*}
$$

Since

$$
\begin{equation*}
J=\frac{1}{1-\mu^{2}}-\frac{1}{\chi} \tag{13}
\end{equation*}
$$

its estimator will be:

$$
\begin{equation*}
\hat{J}=\frac{1}{1-\left(\frac{1}{R} \sum_{l=1}^{R} m_{l}\right)^{2}}-\frac{1}{\frac{N}{R^{2}} \sum_{l, s} m_{l} m_{s}-N\left(\frac{1}{R} \sum_{l=1}^{R} m_{l}\right)^{2}} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
h=\tanh ^{-1}(\mu)-J \mu \tag{15}
\end{equation*}
$$

and his estimator is

$$
\begin{equation*}
\hat{h}=\tanh ^{-1}\left(\frac{1}{R} \sum_{l=1}^{R} m_{l}\right)-\frac{\hat{J}}{R} \sum_{l=1}^{R} m_{l} \tag{16}
\end{equation*}
$$

the old case instead said

$$
\begin{gather*}
\hat{J}=\frac{1}{1-\left(\frac{1}{M} \sum_{l=1}^{M} m\left(\sigma^{m}\right)\right)^{2}}-\frac{1}{\frac{N}{M} \sum_{l=1}^{M} m^{2}\left(\sigma^{m}\right)-N\left(\frac{1}{M} \sum_{l=1}^{M} m\left(\sigma^{m}\right)\right)^{2}} \tag{17}\\
\hat{h}=\tanh ^{-1}\left(\frac{1}{M} \sum_{l=1}^{M} m\left(\sigma^{m}\right)\right)-\frac{\hat{J}}{M} \sum_{l=1}^{M} m\left(\sigma^{m}\right) \tag{18}
\end{gather*}
$$

The method just identified will be soon applied to real data.

