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The visit has started on 15th July 2013 and lasted for 13 days. The purpose was

to collaborate in a number of directions pertaining to interacting particle systems,

probabilistic cellular automata and models of random growth.

In particular, we had planned to study:

(1) the relationship between, on the one hand, the criteria for product measure

marginal distributions for one-dimensional cellular automata obtained in [3] and,

on the other, the conditions under which multitype exclusion processes (e.g. [4])

or queueing systems (e.g. [5]) are exactly solvable;

(2) an approach via probabilistic cellular automata to the analysis of two-dimensional

spatial games related to directed percolation, of the type studied in a simpler

setting on trees in [2];

(3) problems concerning models of competition growth in two dimensions and higher,

concerning first-passage analogues of the last-passage models considered in for

example [1].

We have discussed several questions related to points (1) and (3). Then, we have

more specifically focused on point (2), and studied a game on Zd, related to directed

percolation. Let us define this game precisely.

Let d be an integer, d ≥ 1, and let (e1, . . . , ed) be the standard basis of Rd. For a

given p ∈ (0, 1). The vertices of Zd are closed (meaning of forbidden access) indepen-

dently with probability p. This gives a configuration on which two players play the

following game.

A position of the game is a vertex x ∈ Zd. From the starting position (0, 0, . . . , 0),

the two players play alternatively, according to the same rules. From position x, a

player can move to any of the open vertices among x + ei, 1 ≤ i ≤ d. The first player

who cannot move loses the game (and the other player thus wins).

A position is said winning if a player in that position has a winning strategy (he

can make the other player lose in finite time). A position is losing if a player in that

position cannot move or can only move to a winning position. Positions that are neither

winning nor losing correspond to draws.
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We have observed that the status of the positions (win, lose, draw) could be ob-

tained by iterating a probabilistic cellular automaton (PCA), and that the existence

of draws with a positive probability was equivalent to the non-ergodicity of that PCA

(we say that a PCA is ergodic if it has a unique invariant measure and if for any initial

measure, the iterates of the PCA converge to that measure).

The PCA involved is closely related to the hard-core lattice gas model on two copies

of the lattice Zd−1. Precisely, reversible measures for that PCA are exactly Gibbs

measures for the hard-core model with an activity λ(p) that is an explicit function of

the parameter p.

For sufficiently large values of p (in particular, when there are no infinite directed

paths on the configuration on which the game is played), there are no draws with

probability one, and the distribution of the status of the positions can be described

through the unique Gibbs measure of the hard-core model of activity λ(p).

In contrast, when p goes to 0, the activity λ(p) goes to infinity so that for d ≥ 3,

there is phase transition for the hard-core model (in particular, for d = 3, the model

involved is the hard-core lattice gas model on the honeycomb lattice). This means that

for p small enough, the PCA is not ergodic and that draws have a positive probability.

However, for d = 2, the existence of draws is unsettled: there is no phase transition

for the corresponding hard-core model, and the unique Gibbs measure is a Markov

chain that can be explicitly computed (so that for sufficiently large values of p, we

know exactly the distribution of losing and winning positions). But for small values of

p, the PCA could be non-ergodic, even if it has a unique reversible measure.

Through the study of this game, our work has highlighted non-trivial connections

between directed percolation, probabilistic cellular automata, and the hard-core lattice

gas model. We have been able to describe the solutions of the game for large values

of p and also to prove the existence of draws for small values of p, when d ≥ 3. The

study of the case d = 2 and p small is still in progress and could lead to interesting

developments.

In the future, we would also be interested in studying more in detail the questions

related to points (1) and (3) mentionned above.

We are very grateful that is has been possible for RGLIS to support this collab-

oration. It has laid the ground for a more extended visit (several months) by Irène

Marcovici to Oxford during the first part of 2014, for which we have obtained a (partial)

funding from the Fondation Sciences Mathématiques de Paris.
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