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The purpose of the visit was a collaborative effort around the research into three-

dimensional (3-D) modeling of quasioptical two-reflector antennas with rotational symmetry 
using a fast and accurate numerical method based on the singular integral equations and 
interpolation-type discretization.  

Two-reflector antennas are used in various communication and radar system across the whole 
millimeter-wave range. Well-known examples are Cassegrain antenna, which has paraboloidal 
and hyperboloidal reflectors, Parabola-Cone (PACO), axis-displaced Cassegrain, and axis-
displaced ellipse. Accurate modeling of such antennas with convergent and economic numerical 
methods allows analyzing their performance, studying physical effects in detail, and obtaining 
optimized configurations.  

Transportable atmospheric Radar (TARA), which is a combination of parabolic reflector and 
conical shield, is a real system used at the Delft Technical University. This is also a two-reflector 
antenna however the reflectors are welded together along the rim of paraboloid. The aim of such 
design is to reduce the signals received from all directions in the plane of paraboloid rim because 
TARA looks into zenith and only the signals reflected from that direction are relevant.  

I was going to derive basic equations for an arbitrary two-reflector co-axial configuration. The 
numerical efforts were planned to be concentrated on the analysis and optimization of TARA as 
a computationally simpler case. This is because studying the reflectors of quasi-optical size (for 
instance, some 20 to 50 lambda) within realistic computer time on a moderate PC needs 
developing not simply a convergent algorithm but a truly economic one.  

The electromagnetic field scattered by an axially symmetric PEC zero-thickness screen has to 
satisfy Maxwell equations, edge condition, radiation condition, and PEC-type boundary 
condition. When working towards my Ph.D. thesis, I had developed a numerical method that 
reduced the corresponding wave-scattering problem, for each of the azimuthal harmonics of the 
current density components, to two coupled one-dimensional integral equations (IE) with 
varying coefficients. One of these IEs is hypersingular and another is singular. Their 
discretization is based on the Nystrom-type interpolation scheme and specifically tailored 
quadrature formulas of interpolation type. This method has guaranteed (mathematically proven) 
convergence in full range from quasi-statics to quasi-optics.  

However for quasi-optical antennas this numerical method needed some improvements. These 
improvements relate to calculation of the so-called modal Green’s function (MGF) 
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surface) for large values of L, and analytical calculation of the smooth kernels limit when the 
integration point tends to the observation point.  

 
Description of the work carried out during the visit. 
According to the proposal, I have been working on the optimization of my algorithm. In 

quasi-optical range the unknown current densities have many oscillations on the reflector 
surface. This calls for high order discretizations. To reduce the calculation time it is needed to 
develop faster numerical methods to calculate the matrix elements. The calculation of MGF and 



its first and second derivatives takes almost all calculation time. Therefore, the first step in the 
method improvement is to obtain optimal quadrature formulas for MGF in the quasi-optics 
range. To calculate the MGF I have used quadrature formula of interpolation type. In this 
quadrature formula the integrand is approximated by the trigonometric polynomial and the 
integrals of these trigonometric polynomials are expressed analytically. The quadrature formula 
has exponential convergence. If one increases the degree of trigonometric polynomial, which 
approximates the integrand, then it is seen that the relative error of computations starts quickly 
tending to zero after crossing certain value of that degree. The problem is to evaluate this degree 
a priori. For this I have majorized the trigonometric function coefficients and thus evaluated the 
quadrature formula order n  needed to obtain a relative error smaller than the fixed value for any 
MGF parameter.  

Another problem consists in efficient calculation of smooth kernels of integral equation in the 
case of integration and observation points’ coincidence. Smooth kernels contain difference 
between MGF and its derivatives and their asymptotics. MGF has singularity in the case of 
integration and observation points’ coincidence. Therefore, we have uncertainty of the form 
∞ − ∞  in the smooth kernels and have to calculate the smooth kernel limits when the ntegration 
point tends to the observation point. Numerical calculation of this limit is simple but very rough 
in the quasi-optics range. Therefore, the second step is analytical proceeding to the limits for the 
smooth kernels in the case of the integration and the observation points’ coincidence. The MGF 
can be expressed through some 2C -smooth functions, the first and the second kind elliptic 
integrals (in the case of parameterization of rotation contour using 2C  functions). The finding of 
the mentioned above smooth kernel limits is based on the well-known asymptotics of the first 
and second kind elliptic integrals.  

After that I have considered the real-life TARA-like shielded paraboloidal reflector antenna 
(Fig. 1).  
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Fig. 1. The cross-sectional geometry of TARA 
 
My goal was determining the optimal TARA shield length and shield inclination angle for the 

best focusing (in the reception mode) and for the largest directivity and the lowest sidelobes in 
the direction that is orthogonal to the rotational axis (in the transmission mode). 

The TARA is used for studying atmospheric phenomena such as clouds, precipitations and 
clear air turbulence. It consists of a parabolic reflector and a conical shield. One of the major 
antenna design requirements is a very low level of the sidelobes around 90θ =  degrees, less than 
-70 dB. This is the purpose of including the shield in the design of antenna.  

The TARA parabolic reflector has the diameter 2D f= of 33 wavelengths (3 meters) and the 
shield has the length L  of 22 wavelengths (2 meters) and the angle of inclination 0ϕ  of 30 
degrees. For modeling the TARA in the transmission case the feed is simulated using a Complex 
Huygens Element (CHE) placed in the geometric focus of the parabolic reflector. For modeling 
the TARA in the reception case we consider plane wave diffraction and focusing. 

 



The CHE is a convenient simplified model of a realistic corrugated-horn or horn-lens antenna. 
Its field function has some parameter “b” that is formally the imaginary part of the source location 
point. If b = 0 then the field function coincides with the field of the classical Huygens Element 
(HE) which consists of orthogonal to each other elementary electrical and magnetic dipoles. As 
known, HE has fixed directivity. If b is increased, then the directivity of such a modified source 
can be made larger and, correspondingly, the reflector edge illumination lower. Therefore such a 
feed is convenient for simulating the incident fields in the modeling of reflector antennas. In Fig. 
2 we show the directivity of the TARA-size paraboloidal reflector illuminated by CHE as a 
function of parameter kb . One can see that the optimal parameter is 2.37kb = . Further we use 
CHE with this optimal parameter. 

There is an angle on the contour of TARA reflector between the paraboloid and the shield. 
However, the method considered needs contour smoothness. Suppose that ( ) ( ),s z sρ  is the 
natural parameterization of the shielded paraboloidal surface rotation contour C  (the expressions 
of this parameterization have been established), Parl  is the parabolic-part length, Shl  is the shield-
part length. Now, fix the points A  and B  on the rotation contour (Fig.3). 

 

 

Suppose that Angl  is the angle between the points A  and B . Then the contour parameter value 

( ) ( )0 0, 0,A Par Ang Angl l l s s l= − − ∈  corresponds to the point A  and the parameter value 

( )0 0, 0,B Par Angl l s s l= + ∈  corresponds to the point B . To approximate the angle between points 

A  and B  one can use a spline. There is a set of splines with parameter 0s . We have chosen the 
spline with the smallest length. The numerical experiments for TARA have shown that the far- 
and near-field patterns for Angl λ=  and smaller values almost identical. Therefore we have further 
considered the shielded paraboloidal reflector with a smoothed angle characterized with Angl λ= .  

In Fig. 4, the H- and E-plane far-zone radiation patterns of a TARA paraboloidal reflector 
without the conical shield and that of the full TARA system are compared on a logarithmic scale. 

One can see that in the direction which is orthogonal to the axis of rotation (90 degrees), and 
near to it, the TARA radiation pattern has sidelobes lower than for the stand-alone parabolic 
reflector, by some 20 to 30 dB. The CHE source here has been taken in such a way that it 
provides the maximum directivity for the stand-alone parabolic reflector. 
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Fig. 2.  The directivity of a stand-alone 
paraboloidal reflector illuminated by CHE as a 
function of parameter kb  

Fig. 3. Smoothening of the shielded 
paraboloidal reflector contour. 
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Fig. 4. The total far-zone radiation patterns of the TARA-like parabolic reflector without the 
conical shield and the full TARA system in the H-plane (top) and in the E-plane (bottom) 

 
In Fig. 5, we show, on a logarithmic scale, the near-zone field of the full TARA reflector 

illuminated by the optimal CHE in the E- and H-planes. For comparison, the 0| / |totE E  pattern 
of the full TARA illuminated by the plane wave in the E- and H-planes is shown in Fig. 6. 
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Fig.5. The near-field of the full TARA configuration illuminated by the optimal-kb CHE source 
placed into geometrical focus in the H-plane (left) and the E-plane (right) 
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Fig. 6. The near-field of the full TARA configuration illuminated by the plane wave propagating 
along the axis of rotation in the H-plane (left) and the E-plane (right) 

 



In Fig. 6 we can see an interesting phenomenon that escapes geometrical-optics descriptions. 
Besides of the main focal spot (area of the field concentration) there is another split “focus” near 
the paraboloid bottom. The latter areas of the field concentration appear because of combined 
diffraction by the conical shield and paraboloidal reflector. 

Our computations have shown that the TARA directivity can be improved, and the length of 
the conical shield can be reduced by half a meter, by changing the shield inclination 0ϕ  from 30 
deg to 5 deg. In Fig. 5 we compare, on logarithmic scale, the far-field patterns for a shielded 
paraboloidal reflector with the inclination angle 0

0 5ϕ =  and shield length 1.5 mL =  and similar 
dependences  for the real TARA with 0

0 30ϕ =  and 2 mL = .  
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Fig. 5. The total far-zone radiation patterns of the TARA-like configurations in the H-plane (top) 
and in the E-plane (bottom) for 0

0 5 , 1.5 mLϕ = =  and 0
0 30 , 2 mLϕ = =  

From Fig. 5 it follows that the shielded reflector with 0
0 5ϕ =  satisfies the major antenna 

design requirement on the sidelobes as mentioned above. It should be noted that the directivity for 
the shielded paraboloid with 0

0 5 , 1.5 mLϕ = =  is larger than for TARA ( 0
0 30 , 2 mLϕ = = ). 
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