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Purpose of the visit  
Within this project the idea was to develop a model and numerical method for solving scattering from 
curved multilayered dielectric or metalic objects. Challenges in solving Maxwell's equations for 
considered structures are not in the equation themselves but in data describing the electromagnetic 
problem (large electric size, geometric coplexity, inhomogeneous discontinuous materials...). In order 
to successfully design curved lens structure one needs to develop specialized algorithms since the 
considered structures are very large in terms of wavelengths and they contain a lot of small details 
within each of the layers (by definition, the unit cell of the structure pattern is smaller than a 
wavelength). The need for a specialized program lies in the fact that these large finite structures with 
numerous small cells cannot be efficiently designed using general electromagnetic solvers since 
memory requirements would be extremely large and the successful optimization would be too slow. In 
order to solve described project some kind of reduction of dimension is derived which allows us to 
reduce 3D integral equations to 2D integral equations over thin structures. With this reduction it is 
possible to reduce computational time which means that optimization procedures becames faster and 
more efficient. 

Description of the work carried out and main results obtained 
In this report we propose an approximate method for solving the scattering problem from curved thin 
dielectric layer which allows us to model and produce curved multilayered lenses. We assume that 
permittivity ε is scaled as 1/h where h describes thickness of the scatterer. The method starts with 
Helmholtz equation which is transformed to a Lippmann-Schwinger type of equation using standard 
Greens function method. In order to use information about small thickness of the structure perturbation 
method in terms of small parameter which describes thickness is applied. Solution to a full 3D problem 
is described as a series in dimensionless parameter h. Using that procedure starting integral equation 
over 3D structure is reduced to an integral equation over 2D structure. Transition from Helmholtz to 
Lippmann-Schwinger equation greatly reduces computational time but still we have to solve 3D 
integral equation. After perturbation analysis it is enough to solve only 2D integral equation.  
 



Scattering from dielectric thin structure is described by scalar Helmholtz equation with permittivity ε: 
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Solution of the problem is field u which can be decomposed as u=ui+us where ui is incident field 
(excitation) and us is scattered field (solution of the scattering problem). Thin object will be marked as 
Sh where h is thickness of the object. We will assume that the object has a constant thickness.  

 

Figure 1. Scattering from curved object with thickness h 

Inside object we have permittivity: 
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We will assume that ε0 is bounded inside object Sh. If we decompose solution u into incident and 
scattered field we can treat right side of the previous equation as an excitation for scattered field. 
Using free space Green’s function G last equation could be transformed into integral equation for 
scattered field: 
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We assume that outside our object is free space which mean that 1-ε=0 and integration is taken just 
over our object Sh. We can add incident field on both sides of last equation. With that we get integral 
equation of Lippmann-Schwinger type for total field u: 
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Last equation is implicit equation for total field u. We have total field u on both sides of the equation. 
That is a god and a bad point. If we know total field inside object Sh we can use it to compute field in 
every point in space. That means that we reduced portion of space in which we will use numerical 
solution to solve the problem. Bad thing is that we need total field inside object Sh which is not 
explicitly given in the equation. Mathematical theory behind equations of similar type are given in the 
theory of compact operators and three Riesz theorems about operators of I+A type where I is identity 
operator, and A is an compact operator. That equation is a starting point for perturbation procedure in 
which we will use information that our structure is very thin. 

In order to use perturbation method we will have to write object Sh in terms of parametrization with set 
Ωh. We will assume that our object could be parametrized with diffeomorphic parametrization and with 
only one chart. If object is more complicated and more chart are needed that computation will be more 
complicated but all ideas will be the same. After all derivation only what will be complicated in 
application of our results is finding the parametrization for different objects. We will assume that y is 
parametrization of our object Sh in terms of variable z from Ωh. 



 

 
Figure 2. Parametrization of curved structure 

 
 

In order to define integration over structure Sh we have to define metric tensor g of the structure and 
redefine our integral equation as: 
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We have to scale variable in z3 in order to get dimensionless parameter h and to remove h from 
integral boundaries. After transformation we get equation which is prepared for perturbation analysis: 
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We assume that our solution could be described as local perturbation series in terms of dimensionless 
parameter h which describe thickness of the structure. In the rest of the report we will use two 
notation. One represent point in space in terms of parametrization domain (x), and other represents 
point on the surface S (x0): 
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Same is with point y. Incident field is a plane wave so it could be decompose in terms of it Taylor 
series. If we put both series into equation we will get: 
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We can collect terms without h into equation for first term approximation: 
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Idea is to take limit h →0 and get implicit equation of first order approximation u0. In order to show 
convergence and error estimate we have to go deeper into the analysis of previous equation. 



Everything connected with the analysis behind this equations and all numerical estimates will be 
presented in forthcoming paper.  Here is just the final solution which is a good starting point for an 
analysis of the problem, numerical methods, eventual homogenization and optimizations: 
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At the end we have difference between approximate and real solution, where u0 represents 
approximate solution, and v is equal to full solution: 
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where C is a constant which is independent on h but could be dependent on k0. That means that the 
solution of an approximate 2D scattering problem converge to a solution of a full 3D scattering 
problem. With this procedure we decreased computational time because we reduced our 3D problem 
to a solution of a 2D problem. We reduced one dimension which will reduce matrix size in our 
numerical solution of the problem. We also know speed of this convergence which is O(h).  

In order to show previous asymptotic solution in action we will solve scattering in 2D space from a one 
part of the thin sphere of thickness h with r=0.03 m, ϕ1=180º and ϕ2=0º. Our object will be 
homogeneous with permittivity ε0=10. For scattering problems in 2D space we have to use different 
Greens function than in 3D space. In first problem incident field have a direction k=(1,1). There is no 
special reasons for picking up a 2D problem. Idea is just to show how powerfull is our approximation 
so we used simpler case because it is easier and faster to solve it. 

 

Figure 3. Test model for approximation derived in this report 

We will look at total field in one line behind the object and on absolute error between full and 
approximate solution. All solutions will be obtained through numerical solution of integral equation. In 
order to get rid of numerical error we will use high density mesh for both numerical solutions. On the 
Figure 4. we can see the field values calculated for a full model and approximate solution. We look at 
the field value on a position x=0.15 m, and y=-0.3 m to y=0.3 m. We can see that the difference 
between approximate and a full solution is very small. On a Figure 5. we have comparison between 2 
different full solution. One is for h=10^-3 m and second one is for h=10^-4 m. As we can see it is very 
hard to distinguish approximate solution and full solution for h=10^-4 m so I put a Figure 6. on which 
one small portion of previous Figure is zoomed. On a Figure 7. absolute error between approximate 
and a full solution is presented. As we predicted in a theoretical part of the report, error have an O(h) 
behaviour. From this theoretical work we see that for a thin dielectric we can use approximation which 
is derived through this visit to University of Michigan, and get a very accurate results. Generalization of 
this result to a multilayer structure is straightforward and it is not so hard to use it in some of those 
situations. 



 

Figure 4. Comparison between solution of a full 3D model and  
approximate 2D model for h=10^-3 m 

 

 
Figure 5. Comparison between solution of a full 3D model and approximate 2D model 



 
Figure 6. Zoomed one small portion of a Figure 6 for h=10^-3 m and h=10^-4 m 

 
 

 

Figure 7. Absolute error between approximate solution and a full solution for h=10^-3 m to h=10^-11 m 



 

 

Future collaboration with host institution  
Solved problem is just a first step in a scientific work in this area. This method allows us to work on 
models of multilayered curved lenses without any constraint on a permitivity inside or a shape of the 
lense. This method allows us to put some kind of periodic structure inside and then made standard two 
scale homogenization which is very usefull in lense design. Because this is just a first step in 
developing general procedure for designing curved multilayered structures we expect to collaborate 
with prof. Anthony Grbic's group a lot in the future. We expect to finish one design as soon as possible 
and produce it in University of Michigan Nanofabrication Laboratory and measured it in Radiation 
Laboratory at the University of Michigan. 
 
Projected publications/articles resulting from the grant  
During the exchange period one journal paper was prepared and it will be submitted as soon as 
possible to IEEE Transaction on Antennas and Propagation, and one conference paper is submitted 
and accepted on the EuCAP conference. We expect to write one more paper about our theoretical 
work and one paper about design. 

 
 
 
 


