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1) Purpose of the visit 

 
The main idea of the proposed research was to study numerically tunability of the resonance 

frequencies of a thin dielectric disk covered with two graphene layers. Graphene, which is a 
planar hexagonal structured layer of carbon atoms, is a very promising material in 
nanoelectronics. It is a zero bandgap semiconductor with conductivity tuned either by 
electrostatic or magnetostatic gating. Graphene layer located in free space or in a dielectric host 
medium supports surface-plasmon waves in the terahertz range, the properties of which depend 
on the properties of the host medium and graphene conductivity. In the project work, we 
proposed to investigate the emission and absorption of waves generated by a point source in the 
presence of a single graphene disk and a thin dielectric disk covered with graphene on two flat 
sides. Such structures are of interest for several reasons. First of all this needs a graphen layer and 
its conductivity model to be incorporated into electromagnetic boundary-value problem. Secondly 
the excitation of plasmon resonances on graphen disks allows designing a tuneable open 
resonator in the terahertz frequency range. This tunability can be provided in more realistic way 
and even be greatly enhanced if two graphene screens sandwich a thin dielectric disk. 

The study is based on the full-wave analysis using the method of analytical regularization 
(MAR) developed earlier for a thin dielectric disk. In part, this development was performed during 
my previous NEWFOCUS exchange-visit travel grant to Universite de Rennes 1 in 2011.  

Later I have developed an analytical-numerical method for the study of electromagnetic wave 
scattering by a thin graphene disk. We suppose that the radius of graphene disk is larger than 50 nm 
and thus disregard the edge effects on the graphene conductivity and use the electrical conductivity 
model developed for infinite graphene sheets. To solve Maxwell boundary value problem we have 
to derive a set of dual IEs in the spectral domain. That enables us to reduce the problem to another 
set of the Fredholm second kind IEs on the semi-infinite interval for the unknown images of the 
normal to the disk field components. The features of such equations guarantee the existence and 
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uniqueness of their exact solution, thus one can use simple schemes to solve them numerically. We 
use a convergent and economic Nystrom-type discretization to obtain the final matrix equation. 

 
2) Description of the work carried out during the visit and the main results 

obtained 
 

Mathematical Models of Graphene Layer and Sandwich Layer 
To study electromagnetic wave scattering by graphene objects is necessary to couple the 

Maxwell’s boundary value problem with phenomenological model of graphene conductivity. The 
main challenge of such approach is to involve zero thickness of the scatter into the model. This 
can be done by approximating the graphene slab with an equivalent thin layer with finite 
thickness. However such approach leads to the computational disaster due to very high length-to-
thickness ratio (and thus very large size of matrix to be inverted). A way out of this is to model 
graphene as an equivalent zero-thickness resistive (also called impedance) surface.  

Consider the scattering of the time-harmonic ( i te ω− ) 
electromagnetic field of an elementary dipole by a graphene or 
graphene-dielectric-graphene (GDG) sandwiched disk with 
radius a  (Fig. 1). Suppose the dipole is located at the distance 
h  above the disk and is shifted from the disk axis at the 
distance 

0
r . In our analysis, we will use the dimensionless, i.e. 

normalized to the radius of the disk cylindrical coordinates 
( , , )ρ ϕ ζ  with the origin in the centre of the disk. Decompose 
the total field as a sum of the incident and the scattered by the 
disk electromagnetic fields. Assume that that the scattered 
field satisfies homogeneous Maxwell equations outside the 
disk, while the total field satisfies the following two-side generalized boundary conditions: 
a) on a single graphene disk, 
 ( ) ( )12

tg rg Gr tg tg
E E n H Hσ+ − − + −+ = × − , ( ) 0

tg rg
E E+ −− =  (1) 

b) on the median plane of a graphene-sandwiched dielectric disk, 
 ( ) ( )0

2
tg tg eff tg tg
E E R Z n H H+ − + −+ = × −  (2) 

 ( ) ( )0
2

tg tg eff tg tg
Z H H Q n E E+ − + −+ = − × −  (3) 

In (1), 
0
Z  is the free-space impedance, n  is the normal to the disk surface unit vector, and σ  is 

the graphene surface conductivity. This quantity can be determined from the Kubo formalism and 
expressed as a sum of intraband (

intra
σ ) and interband (

inter
σ ) contributions given by the 

following expressions:  
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where e  is the charge of an electron, 
B
k  is the Boltzmann constant, T  is temperature,  is the reduced 

Planck constant, ω  is the angular velocity, τ  is the relaxation time of an electron, 
c

μ  is the chemical 

potential and 
d
f  is the Fermi-Dirac distribution function. Besides, here 

eff
R  and 

eff
Q  are effective 

electrical and magnetic resistivities, which depend on the permittivity of dielectric material, graphene 
conductivity, frequency of the incident field, and sandwiched disk thickness. Expressions for effective 

ED

h
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z

Figure 1. Micro-size graphene disk 
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resistivities will be obtained below. Note that the resistive-type two-side boundary conditions (1) are a 
limiting case of the generalized boundary conditions (2), (3) for 

0
1/( )

eff Gr Gr
R R Z σ= , 0

eff
Q = . 

To find effective resistivities for a GDG disk, we follow the 
following procedure: 

• At first, we split the whole sandwich into three single layers 
(Fig. 2) and suppose there are non-zero free space gaps 
between each of layers. Define 1, 1,( , )

tg tg
E H+ +  and 1, 1,( , )

tg tg
E H− −  

as the limits of the tangential to the layer field components at 
the top and the bottom sides of the top layer, respectively. 
Also define 2, 2,( , )

tg tg
E H+ +  and 2, 2,( , )

tg tg
E H− −  as the limits of the 

tangential field components at the top and the bottom surfaces 
of dielectric layer. Finally, define 3, 3,( , )

tg tg
E H+ +  and 

3, 3,( , )
tg tg
E H− − as the limit values of the field components at the bottom-graphene-layer top and 

bottom sides, respectively. 
• Consider the following boundary conditions: 

 ( ) ( ) ( )1, 1, 1 1, 1, 1, 1,2 , 0,
tg tg Gr tg tg tg tg
E E n H H E Eσ+ − − + − + −+ = ⋅ × − − =  (6) 

 
( ) ( )
( ) ( )
2, 2, 2, 2,

0

2, 2, 1 2, 2,
0

2 ,

/2 ,
tg tg Diel tg tg

tg tg Diel tg tg

E E Z R n H H

E E Z Q n H H

+ − + −

+ − − + −

+ = ⋅ × −

− = ⋅ × +
 (7) 

 ( ) ( ) ( )3, 3, 1 3, 3, 3, 3,2 , 0.
tg tg Gr tg tg tg tg
E E n H H E Eσ+ − − + − + −+ = ⋅ × − − =  (8) 

They are conditions for the electromagnetic field on a graphene layer (6), (8) and two-side 
GBC for a thin dielectric layer (7). Here, R  and Q  are the electric and magnetic resistivities 

given as /2 cot( /2)
r r

R iZ kε μ τ= , 2/Q R Z=  if 1kτ  and 1
r r
ε μ , 

0
Z  is the 

free-space impedance, Z  is the relative impedance of the disk material, /k cω=  is the 

wavenumber, 
r
ε  and 

r
μ  are the relative permittivity and permeability, respectively. 

• Assume that the thicknesses of each gap tend to zero. Then 1, 1, 2, 2,( , ) ( , )
tg tg tg tg
E H E H− − + +=  

and 2, 2, 3, 3,( , ) ( , )
tg tg tg tg
E H E H− − + +=  and after some algebraic transformations we obtain the 

following: 
 ( ) ( )1, 3, 1, 3,

0
2

tg tg GDG tg tg
E E Z R n H H+ − + −+ = ⋅ × − , (9) 

 ( ) ( )1, 3, 1 1, 3,
0
/2

tg tg GDG tg tg
E E Z Q n H H+ − − + −− = ⋅ × + , (10) 

where 
 ( )/ 2 / 1

GDG Diel diel Gr
R R R R= + , 1/2

GDG Gr Diel
Q R Q= +  (11) 

Thus we have obtained the two-side GBCs for the tangential to the layer field 
components. They can be used for the modelling of a graphene-dielectric-graphene 
sandwich layer. The use of these two-side GBCs enables one to exclude from 
consideration the field inside the sandwich while solving the scattering problem. 

• By the similar but reverse procedure one can modify the obtained two-side GBCs so that 
the sandwiched layer can be reduced to a boundary of zero thickness. Finally, that leads 
to the effective GBC (2) and (3) at the median section of the layer with effective 
resistivities given by the following expressions: 

1, 1,( , )
tg tg
E H+ +

3, 3,( , )
tg tg
E H− −

Figure 2. Split layers 
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where ( )0 0
cot /4 /2R Q i kτ= =  and 

GrDielGr
R , 

GrDielGr
Q  are given by (11). 

 
Integral equations and numerical solution method 

For uniqueness, we additionally request the total field to satisfy the radiation condition and the 
condition of local integrability of power. We also assume that the scattered field is continuous 
everywhere outside the disk. To apply the MAR developed earlier for a dielectric disk scattering 
problem, it is necessary to supplement GBC (1)-(3) with the condition of the absence of 
equivalent currents out of disk’s surface in the plane of its median section ( 0, 1)ζ ρ= > . 

To solve the 3-D scattering problem by a disk, we use the method of the dual integral equations 
(IEs) in the spectral domain together with the concept of analytical regularization. The following 
expressions for the normal and tangential to the disk scattered-field components in terms of the scalar 
and vector Fourier-Hankel transform are used to satisfy analytically the Maxwell equations and the 
condition of radiation at infinity: 
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Here, 2 2 1/2( ) [( ) ]kaγ κ κ= −  is the complex-valued function with the branch corresponding to 
Im( ( )) 0γ κ ≥ , k  is the free-space wavenumber, and ( )

m
H κρ  is the matrix kernel of the vector 

Hankel transform given by 

 | | | |

| | | |

( ) ( )/( )
( )

( )/( ) ( )
m m

m
m m

J mJ
H

mJ J

κρ κρ κρ
κρ

κρ κρ κρ

⎛ ⎞′ ⎟⎜ ⎟⎜= ⎟⎜ ⎟′⎜ ⎟⎜⎝ ⎠
, (16) 

where ()
m
J ⋅  is the Bessel function of the order m, ()

m
J ′ ⋅  its first-order derivative, and ,

,
( )sc

m z
e κ±  and 

,
,
( )sc

m z
h κ±  are the spectral-domain images of the field components normal to the disk. 

By substitution of the expressions (14), (15) into the GBC we reduce the problem to a set of 
dual IEs (for each azimuthal index m) for the unknowns, which are the images of the jumps and 
the average values of the scattered field components normal to the disk. Then, following the 
MAR developed earlier for a thin dielectric disk and inverting the most singular part of IEs, we 
reduce the scattering problem to a set of the Fredholm second kind IEs on the semi-infinite 
interval. The features of such equations guarantee the existence and uniqueness of their exact 
solution. To solve them we use a numerical technique which is based on the truncation of the 
integration interval to the finite one combined with the discretization of the truncated equations 
by a Nystrom-type scheme. Finally we obtain a set of linear algebraic equations and solve it 
numerically using the Gauss inversion of the corresponding matrix. 
 
Numerical results 

a) Single graphene disk 
To study the excitation of the graphene-disk plasmon resonances by the point sources (see Fig. 1), 

we chose, as the figures-of-merit, the power radiated by the chosen source in the presence of the 
graphene disk and the power lost due to absorption. The both values will be normalized by the power 
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radiated by the same source located in free space. We have considered two types of dipoles, namely a 
horizontal magnetic dipole and a vertical electric dipole. Our aim is to study the excitation of the 
graphene plasmon resonances as the source of the incident field shifts from the disk axis toward the 
rim of the disk. Besides, we analyze how the resonances shift if the chemical potential gets larger.  

We start our consideration with the dipoles located on the disk axis (
0
0r = ) and change the 

chemical potential of the graphene 
c

μ  from 0.25 to 1.0 eV. Fig. 3 shows the normalized radiated and 
absorbed powers as a function of the frequency in the case of a horizontal magnetic dipole excitation. 
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Figure 3. Normalized radiated and absorbed powers versus the frequency for  
the graphene disk (a = 25 μm) excited by the on-axis horizontal magnetic dipole. 

 
One can see several resonance peaks on each curve. They correspond to the family of standing-

wave plasmon resonance modes with one variation of the field along the disk azimuth and several 
variations along the disk radius. Thus, for example, the resonance frequency f = 1.5425 THz for the 
red curve in Fig. 3(a) corresponds to the resonance mode with a single variation of the field along the 
azimuth (without variation along the radius). A typical far field pattern in such resonance looks like 
the pattern in Fig. 5(d). Also note the up-shifting of the resonance frequencies when the graphene 
chemical potential gets larger (this is the same as increasing the electrical bias of the graphene 
material). 

Fig. 4(a) shows frequency dependences of the normalized radiated power for the same 
parameters of graphene disk but in the case of the on-axis vertical electrical dipole excitation. 
Such incident field has no variations along the azimuth and thus it excites only azimuthally-
symmetric (m = 0) surface plasmon modes. Figs. 5(a)-5(c) show the radiation patterns at three 
resonance frequencies, f = 3.1368 THz, 4.5512 THz and 9.3182 THz for the red curve (which 
corresponds to the graphene chemical potential of 0.5 eV) in Fig. 4(a). 

Fig. 4(b) shows frequency dependences of the normalized radiated power for several different 
source-point locations. Here, we start shifting the vertical electrical dipole from the axis of the 
disk to the rim and observe excitation of cylindrical standing-wave plasmon modes of different 
azimuthal families ( 0;1;2;...m = ). 

According with the conception of effective refractive index of a thin-disk resonator, the 
plasmon-resonance frequencies of a stand-alone graphene disk can be found from the approximate 
characteristic equation as follows: 

 ( ) 0, 0;1;2;...
m p
J a mα ≈ =  , (17) 

where 2
0

1 ( /2)
P
k Zα σ= −  is the propagation constant of a surface-plasmon wave supported by 

the infinite layer of graphen suspended in free space. 
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Figure 4. Normalized radiated powers versus the frequency for the graphene disk (a = 25 μm)  
excited by the on-axis (a) and the shifted (b) vertical electric dipoles. 

 
The 3-D far-field radiation patterns presented in Figs. 5(d)-5(f) have been computed at three 

resonance frequencies f = 1.5425 THz, 2.3071 THz and 8.9016 THz corresponding to the 
excitation of the plasmon modes with 1;2; 4m =  and marked in Fig. 4(b). 

 

    
 (a) (b) (c)  
 

    
 (d) (e) (f)  
 

Figure 5. Far-field radiation patterns in the case of the graphene disk excited by the vertical electrical dipole; 
on-axis dipole location, r0 = 0; f = 3.1368 THz (a), f = 4.5512 THz (b), f = 9.3182 THz (c) and 
shifted dipole location, r0 = 0.9a; f = 1.5425 THz (d), f = 2.3071 THz (e), f = 8.9016 THz (f) 

 
b) Sandwiched disk 

For the numerical study of the electromagnetic excitation 
of a sandwich-like GDG disk we consider the on-axis horizontal 
magnetic dipole as a source of the incident field (Fig. 6). The 
dipole is located at the disk axis elevated by the distance 

0.055h a= . We consider a sandwich-like disk with the radius 50 
microns and take the dielectric constant 60 0.0006

r
iε = + ⋅ . The 

graphene conductivity is taken for the room temperature, with 1-
ps electron relaxation time, and several values of the chemical 
potential. 

Fig. 7 shows the absolute value of the effective electrical 
resistivity as a function of normalized frequency ka for different 

Figure 6. On-axis horizontal 
magnetic dipole in the presence 

of the sandwich-like disk 
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values of chemical potential of the graphene covers. The black curve corresponds to the effective 
resistivity of a single dielectric disk. One can see that adding graphene covers and increasing its 
chemical potential leads to the shift of the maximum of the resistivity to the higher frequencies 
region. 

 

Figure 7. Effective electrical resistivity as a function of normalized frequency 
 

Fig. 8 shows the normalized radiation power of the on-axis horizontal magnetic dipole in 
the presence of the sandwiched disk as a function of the frequency in terahertz range. One can see 
the resonance behaviour of the curves. The first low-frequency resonance on each curve (except 
the black one) corresponds to the surface plasmon mode of the graphene disk. The next 
resonances correspond to the dielectric disk modes of the “dipole” type, i.e. with several field 
variations along the radius and one variation along the azimuth. One can see a strong shift of 
resonance frequencies under variation of the chemical potential. 
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Figure 8. Normalized radiation power of the on-axis horizontal magnetic dipole in the presence of a sandwich-like disk 
 
This research is on-going and we hope that it will lead to a better understanding of all 

resonance phenomena that are associated to the complicated behaviour of a GDG sandwiched 
disk as an open resonator in the terahertz range. 
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As a result of my collaboration with scientists of the University of Nottingham, we have 
published two conference papers in 2013 (see below). Besides, a few preliminary results have 
been accepted to publication in a paper submitted to a European journal. Further we plan to 
prepare a full-length paper corresponding to the project work. It will study plasmon resonances, 
their near fields and the sandwich-like GDG disk eigenmodes with the aim of possible application 
of such a resonator in terahertz frequency filters and biosensors. We also plan to expand this work 
to the graphen-based terahertz antennas. 

 
3) Projected publications / articles resulting or to result from the grant (ESF 

must be acknowledged in publications resulting from the grantee’s work in 
relation with the grant) 
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disk surface plasmon resonances," Proc. Int. Conf. Electronics and Nanotechnology (ELNANO-
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2) M.V. Balaban, A. Vukovic, T.M. Benson, "Electromagnetic wave scattering by a graphene-
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pp. 237-239. 
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4) Planned: “Excitation of a graphene-sandwiched dielectric disk as a terahertz-range resonator,” 
by M.V. Balaban, et al. 
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