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COPLANAR GRAPHENE GRATINGS” 

PURPOSE OF THE VISIT 
By agreement with the hosts, my work goal was an accurate study of the scattering and absorption of THz waves of 

two alternative polarizations by finite gratings of periodically structured coplanar grapheme-strip gratings. The 
proposed Nystrom-type numerical analysis is based on the median-line integral equations obtained using with the 
generalized boundary conditions and also on the quadrature formulas of interpolation type. Proposed algorithm is 
numerically efficient and guarantees fast convergence and controlled accuracy of computations. It allows to simulate 
fairly rapidly the scatterers consisting even of hundreds of microsize graphene strips. In particular, I planned investigate 
the interplay between the surface plasmon resonances dependent on each individual strip conductivity and width and the 
build-up of the Rayleigh anomalies at the wavelengths / , 1, 2,...p m mλ = =  caused only by the periodicity and 
dependent on the number of strips in the grating.  

DESCRIPTION OF THE WORK CARRIED OUT DURING THE VISIT 
During my visit from 23rd of June to 11st September 2012 I have: 

• got understanding, from my hosts, of the electromagnetic properties of graphene layers in THz frequencies, 
• investigated plane wave scattering and absorption by the coplanar graphene-strip grating in the THz range; 
• studied the surface plasmon resonances emergence on the finite periodic grapheme-strip gratings in THz 

frequency range in the case of H-polarization and a gradual build-up of the Rayleigh anomalies as the strip 
number gets larger at the wavelengths /p mλ = , 1,2m =  in both H- and E-polarizations, but with more 
pronounced properties in the E-wave scattering ; 

• investigated the tunability effects of the plasmon resonances of graphene strip gratings depending on the 
graphene chemical potential and relaxation time; 

• analyzed gap size effects of finite periodic graphene-strip gratings; 
• compared the plasmon nature of the finite and infinite free-standing graphene-strip gratings; 
• presented results at the internal meeting of the Laboratory of Electromagnetics and Acoustics, EPFL; 
• wrote a paper draft for IEEE Transactions on THz Science and Technology journal (to be submitted in 2012) 

and will prepare a joint conference paper for the 2013 URSI-B Symposium on EM Theory in Hiroshima. 
 

The exchange visit gave me opportunity to study new area of application of my on-going studies into the resonant 
scattering and absorption of electromagnetic waves by thin-strip gratings – graphene strips in THz range. This was 
thanks to the expertise and collaboration of my hosts at LEMA-EPFL: Profs. J. Mosig and J. Perruisseau-Carrier and 
Dr. J.S. Gomez-Diaz. I hope that my stay and my work on the project will lead to more permanent research interaction 
between my home R&D laboratory and host laboratory at EPFL. 

DESCRIPTION OF THE MAIN RESULTS OBTAINED DURING THE VISIT 

Problem formulation 
The two-dimensional scattering and absorption of the 

H-polarized (vector E  is across the strips) plane wave 
by finite periodic grating made of N coplanar graphene 
strips is considered in THz frequency range. The 
corresponding free-standing geometry and the problem 
notations are shown in Fig. 1.  

We suppose that the electromagnetic field is time-
harmonic i te ω− . The strips are assumed to be identical 
with the width d and zero thickness, and are 
characterized with complex graphene conductivity 

( , , , )c Tσ ω µ Γ  calculated via the Kubo formulas [for 
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Fig. 1. Cross-section in the XOY plane of the studied free-
standing finite periodic grating of N infinitely long (lengthwise 
OZ axis) graphene strips of the same width d and period p. 
 



details see below] where ω  is the radian frequency, cµ  is the chemical potential, τ  is the relaxation time of charge 
carriers and 1(2 )τ −Γ =  is the phenomenological scattering rate that is assumed to be independent of energy, and T is the 
temperature.  

As known, for a such 2-D problem one has to find a scalar function ( )sc
zH r  that is the scattered field z-component. 

In turn, the total field ( cos sin )( ) ( )sc ik x y
z zH r H r e θ θ− += + , ( , )r x y=  must satisfy the Helmholtz equation off the strips’ 

surface 1UN
j jS S== , where {( ,0) : [ , ]}j j jS x x a b= ∈ , and ja  and jb  are the j strip endpoints. For the graphene sheets, 

the boundary conditions have been formulated relatively recently. It has been shown earlier that they take form of 
electrically-resistive sheet conditions which couple the tangential field components on the strips surface, 
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Here, k is free-space wavenumber and 1/2

0 0 0( / )Z µ ε=  is free-space impedance and σ is the graphene conductivity, 
and the indices ± correspond to the limit values of the field at the top and bottom sides of the strips. 

Nystrom-type discretization 
To satisfy Helmholtz equation and radiation condition, we seek the scattered field in the form of the sum of double-

layer potentials, 
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where (1)

0( , ') ( / 4) ( | ' |)G r r i H k r r= −  is the Green function. Note that the unknown functions ( )jw r  are electric 
currents induced on the strips. 

Using GBC (1)-(2) and the properties of the limit values of potentials in (3), we obtain a set of IEs of the second 
kind for 1,...,( ),j

j Nw x j =  on the interval [ , ]j
j jx a b∈  with hyper-type singular kernel, 
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where 0 cos

0 0( ) 4sin , ( 1,..., ).
iikxi i

if x e x S i Nθθ −= ∈ =  Note the integral terms in (4) are understood in the sense of finite 

part of Hadamard, and corresponding currents ( )j
jw x  can be represented by means of new analytical functions 

( )j
jw x : 1/2 1/2( ) ( )( ) ( )j j j j

j j j jw x w x x a b x− −= − −  on interval [ , ]j ja b . 
Further, we isolate the singularities of (4) in view of the asymptotic expansions for the Hankel functions, 
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and discretize resulted sets of IEs using Nystrom-type method based on the Gauss-Chebyshev quadrature formulas of 
interpolation type of the wn -th order (with weight 21 , ( 1,1)t t− ∈ − ). As the discretization and collocations nodes we 

choose Chebyshev nulls 0 cos( / ( 1))i
wt i nπ= +  of the second type. As a result, we derive independent w wNn Nn×  block-

type matrix equations for the values of 0( )i
jw t . On solving them numerically we obtain approximate solutions of IEs in 

the form of interpolations polynomials for the unknown surface currents. Then the field (3) can be easily reconstructed 
in the near and far zone of the strip grating. 

The presented numerical algorithm is efficient and reliable and has theoretically guaranteed convergence (at least as 
(1/ )wO n ) and controlled accuracy of computations. 

Graphene conductivity 
Graphene conductivity is characterized applying the Kubo formula, 
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where the first term is related to interband contributions of graphene, which usually dominate in the low THz range, and 
the second term is related to interband contributions of graphene, which become more important at higher frequencies. 

From the engineering point of view, it is useful to study the surface impedance of graphene defined as 1/sZ σ= .  
Fig. 2 shows the real and imaginary part of this quantity versus different values of the chemical potential, 

considering the temperature of T = 300 K and the relaxation time τ = 1 ps. Note that µc can be easily varied applying an 
external electrostatic field. 
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Fig. 2. Real (a) and imaginary (b) parts of the surface impedance of graphene 1 /sZ σ=  in THz range calculated at the room 
temperature T = 300 K and τ =1 ps versus the chemical potential µc.

 
Results show that graphene behaves almost as a frequency-independent resistor, with a purely inductive reactance. It 

is observed that an increase of the chemical potential µc leads to lower losses and an up-shift of the frequencies where 
graphene presents large inductive behavior. This particular features makes this material appropriate for the propagation 
of surface plasmon polaritons, which are transverse magnetic (TM) waves traveling along the interface between 
graphene and dielectric. 

Numerical results and discussions 
Nystrom-Type Algorithm Convergence 
For the demonstration the actual rate of convergence, we 

have computed the root-mean-square deviations 
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= −∫ , versus the discretization order 

nw. These results are shown in Fig. 3.  
The errors decrease rapidly confirming the fast rate of 

convergence and solution stability. Thereby proposed Nystrom 
method on the basis of the quadrature rule of interpolation 
type ensures algebraic convergence of the approximate 
solution to the accurate ones with increasing the interpolation 
orders. For instance, to achieve 4-digit accuracy in the analysis 
one can take nw = 55 in the range of up to 10 THz and strip 
width of 20 µm. 

 
Stand-Alone Graphene Microsize Strip 
Stand-alone graphene microsize strips illuminated by the H-polarized wave in THz frequency range demonstrate a 

variety of surface plasmon resonances. In Fig. 4, the plots of TSCS (a) and ACS (b) as a function of the frequency are 
presented for the several stand-alone graphene strips of different width d and different incidence angles, / 2θ π=  (solid 
curves) and / 4θ π=  (dotted curves), respectively.  
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Fig. 3. The computation errors εw as a function of the 
discretization orders nw for stand-alone graphene strip of 
different width d = 10 and 20 µm at f = 5 and 10 THz 
under the normal incidence of the H-wave 
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Fig. 4. TSCS (a) and ACS (b) versus the frequency in THz range for the normally (solid curves) and inclined (dotted curves) 
incident H-wave scattering by a stand-alone graphene strip of varying width d. 

 
Here, the chemical potential is 0.13eVcµ =  and 1psτ = . Note the room temperature (T = 300 K) is assumed 

through the all calculation. As can be observed, the TSCS and ACS spectra variation depends on the strip width. The 
wider strips demonstrate larger number of resonating localized of surface plasmons in the considered THz range.  
Figs. 5 (a)-(b) display the total near-field patterns at the first four plasmon resonances Hn, n = 1,2,3,4 for the scattering 
by graphene strip of d = 20 µm under the normal (a) and inclined (b) incidence, respectively.  
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Fig. 5.Total near-field patterns for a stand-alone graphene strip under the normal (a) and inclined incidence (b) at four first 
resonances, H1, H3, H5 and H7 and H1, H2, H3 and H4, respectively.

 
As one can see, only odd-index resonances are excited at the normal incidence because of their symmetry across y-

axis, and both odd and ever resonances are excited under the inclined incidence. Furthermore, we also investigated the 
spectral response of a free-standing graphene strip of width d = 20 µm in dependence of the variation of the chemical 
potential µc and the relaxation time τ.  

Thereby, Fig. 6 shows that the surface plasmon resonances are quite sensitive with respect to the relaxation time 
changes. The associated peaks of TSCS and ACS became more pronounced if the τ increases. 
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Fig. 6. TSCS (a) and ACS (b) versus the frequency in THz range for the normally incident H-wave light scattering by stand-
alone graphene strip of width d = 20 µm for the different values of the relaxation time τ =0.25, 0.5, 0.75 and 1 ps and fixed 
chemical potential µc = 0.13 eV 



 
In its turn, the increasing of chemical potential with a fixed relaxation time τ = 1 ps leads to the resistance decreasing 

(see Fig. 2 (a)) and results to the smaller number of the PRs within the considered frequency range, but is accompanied 
by significant enhancement of the absorption effect. 
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Fig. 7. TSCS (a) and ACS (b) versus the frequency in THz range for the normally incident H-wave scattering by a stand-alone 
graphene strip of the width d = 20 µm for the fixed relaxation time τ = 1 ps and different values of the chemical potential µc. 

 
PR Prediction According to the Strip Width  
To obtain a better insight into the nature of PRs on the 

individual graphene microsize strips in free space, I have 
calculated the dependences of the resonant frequencies of 1st, 
2nd, 3rd and 4th order plasmon resonance on the strip width (Fig. 
8). As one can see, wider free-standing graphene strips 
demonstrate more resonances in the considered THz range with 
the lowest of them shifted to the lower frequencies. 
 
Gap Size Effects of Finite Periodic Graphene Strip Gratings 

In Fig. 9, we present the plots of TSCS (a) and ACS (b) of 
the triple graphene strip grating of width d = 20 µm in the 
context of the gap size effects. As one can see, when the gaps 
between strips are large, e.g., g = 30 µm, the scattering and 
absorption spectra dictates only by the effects of the 
corresponding stand-alone strip.  

In its turn, the nature of plasmon resonances on a triple strip 
gratings depends on the behavior of the stand-alone 60 µm of width strip and is accompanied by the slight shifting to 
the right with the increasing the gaps. 
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Fig. 9. Normalized TSCS (a) and ACS (b) versus the frequency in THz range for the normally incident H-wave scattering by 
grating of N = 3 strips of width d = 20 µm for the different values of gaps between strips g. Graphene conductivity parameters 
are T = 300 K, τ  = 1 ps and µc = 0.39 eV 

 
Comparison between H-wave and E-wave Scattering 
It is interesting to compare the scattering by infinite and finite gratings however it is far from obvious how to select 

a proper figure-of-merit. We have found that the efficiency of a finite strip grating of reflecting and transmitting a plane 
wave can be introduced as the part of TSCS associated with the power scattered into the upper and lower half-spaces, 
respectively, and normalized by the strip width d and the number of strips N, and the absorbance is obtained directly 
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Fig. 8. Dependence of the frequency of 1st, 2nd, 3rd and 
4th orders plasmon resonance on the graphene strip 
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from the conservation of power. These quantities can be conveniently compared to the reflectivity, transmittance and 
absorbance of infinite grating normalized by the relative width subtended by a single strip. 

Thereby, in Fig. 10 presented is such comparison of the H- and E-wave scattering by finite (e.g., N = 10, 50) and 
infinite strip gratings of d = 20 µm and p = 70 µm. Note the alternative case of the E-polarized plane wave scattering 
(vector E  is parallel to the strips), can be analyzed similarly using Nystrom-type discretization with Gauss-Legendre 
quadratures. As one can see, the H-polarization case demonstrates multiple plasmon resonances in THz range, and a 
gradual build-up of the Rayleigh anomalies at the associated wavelengths /p mλ = , 1,2m = . In its turn, E-polarization 
case does not support any plasmon resonances, but demonstrate much more pronounced build-up of two Rayleigh 
anomalies: at the wavelength value equal to period 1 4.274f THz=  and at the twice smaller value 2 4.96f THz= . 
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Fig. 10. Reflectance (a) and absorbance (b) for the normally incident H-wave and E-wave scattering by a grating of N strips of d = 
20 µm and p = 70 µm. Conductivity parameters are τ = 1 ps and µc= 0.39 eV; and near E-field pattern around the strips ## 25 to 
28 for the E-wave normally incident at the grating of N = 50 graphene strips of d = 20 µm and p = 70 µm at Rayleigh anomaly 
frequency f  = 4.274 THz (c); and corresponding near H-field patterns for the H-wave scattering at the plasmon resonance f  = 
2.6 THz (d) and at Rayleigh anomaly frequency f  = 2.27 THz (e). 
 

As one can see, N = 10 strips are enough to provide normalized reflectance and absorbance efficiency close to the 
infinite grating value in the whole band of frequencies from 0.1 to 10 THz, except for the narrow bands around the 
Rayleigh anomalies. In summary, we have presented numerically accurate analysis of the scattering and absorption of 
the plane waves by the finite and infinite periodic coplanar graphene strip gratings in the THz frequency range based on 
median-line singular integral equations Nystrom-type discretization. As an important side effect of our study, we have 
observed the high surface plasmon resonances localization of the finite periodic grapheme-strip gratings in THz 
frequency range in the case of H-polarization and a gradual build-up of the Rayleigh anomalies as the strip number gets 
larger at the associated wavelengths /p mλ = , 1, 2m =  in both cases of H- and E-polarization. Moreover, we have 
investigated the tunability of resonance effects on grapheme-strip gratings depending on the graphene chemical 
potential. It should be emphasized that, the graphene-strip gratings in comparison with the noble-metal strips, display 
pronounced surface-plasmon resonances in much lower frequency range, shifted to the THz wave. 
 
Planned publications based on the project work: 
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