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VISIT FROM IRE NASU, KHARKIV, UKRAINE 
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UNITED KINGDOM 

 
TOPIC: “INVESTIGATION OF 3-D ROTATIONALLY SYMMETRIC METAL AND 

DIELECTRIC RESONATORS” 
 
 
Purpose of the visit is high-accuracy modeling of 3-D axially symmetric dielectric and metal 
resonators. Microwave resonators are used in a variety of application, including filters, 
oscillators, frequency meters and tuned amplifiers. Dielectric resonators are smaller in cost, size 
and weight than an equivalent metallic cavity. However, accurate mathematical modeling of 
dielectric resonators is harder then modeling of metallic cavity because the first is the whole 
space problem and the second is the problem for finite part of space inside the cavity. 
We use Muller integral equations (IEs) to model the dielectric resonators. They are 2-D 
Fredholm second kind IEs with equivalent magnetic and electric currents as unknowns. For 
axially symmetric bodies we represent currents as Fourier series and reduce 2-D Muller IEs to 
the set of 1-D IE system for each azimuthal order. Each of these systems has four unknown 
functions: two components of electric equivalent current and two components of magnetic 
equivalent current. To descritize these systems we interpolate each term of the current-function 
Fourier series by Legendre polynomials and use quadrature formulas of interpolation type.  
Firstly, we compare results of numerical experiment with analytical solution for a sphere. Then 
we investigate Q-factors and eigenfields for spheroids in the case of modes with zero azimuthal 
order. The purpose of this study is finding an oblate or prolate spheroid with a higher quality 
factor than the dielectric sphere quality factor.  
Secondly, we consider finite dielectric circular cylinder and calculate resonance frequencies, Q-
factors, and eigenfields, and compare these data with real experiments and other theoretical 
methods. 
 
Description of the work carried out during the visit 
 
Suppose that ( ),m mE H  is the total field inside the region mV , 1, 2m = . It can be represented in 

the form of the sum of the incident and scattered ones ( ) ( ) ( ), , ,inc inc s s
m m m m m mE H E H E H= + . 

Boundary conditions require that the total field tangential to the surface of the body is continuous 
from region 1V  to region 2V  (Fig.1).  
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Fig. 1. Dielectric body of revolution and notations 

 
 
These conditions can be expressed as 
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where vector n  is a unit normal vector to the surface S  directed outside (to the region 2V ), 

,m mε µ  are dielectric and magnetic permittivities, respectively , 0 0,τ ϕ  are tangential vectors to 
rotation surface S . 
Scattered electric and magnetic fields are expressed through equivalent magnetic and electric 
current densities ( ) ( )0 0, ,  1, 2e

m m mj P n H P m⎡ ⎤= =⎣ ⎦ , ( ) ( )0 0, ,  1, 2e
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where ( )exp1 , 1,2
4

m
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Rπ
= =  is the Green’s function of the free space of parameters of the 

region mV , 1, 2m = , mn  is the normal, directed to region mV , 1, 2m = . 
Using (1) and (2) one can obtain the Muller integral equations (IEs), 
 

 

( )

( )

( ) ( )
( ) ( )

( ) ( )

( ) ( )

2 1
0

2 2 0 1 1 0

2 1 2 2 0 1 1 0
0

2 2
2 1 2 2 1 1 2 2 1 1

2 2
2 2 1 1 2 1 2 2 1 1

2

2

m
inc inc

inc inc
e

e

m
S

j P E P E P
n

H P H Pj P

i G G k G k G G G j
n dS

i jG G G G k G k G

ε ε
ε ε

µ µ µ µ

ε ε
ϖ

µ µ
ϖ

+⎛ ⎞− ⎛ ⎞⎜ ⎟ +
⎜ ⎟= × −⎜ ⎟ ⎜ ⎟+ +⎜ ⎟ ⎝ ⎠⎜ ⎟

⎝ ⎠
⎛ ⎞⎡ ⎤∇∇ − + − ∇× −⎜ ⎟⎣ ⎦ ⎛ ⎞

− × ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎡ ⎤−∇× − ∇∇ − + −⎜ ⎟⎣ ⎦⎝ ⎠

∫∫

, (3) 

 
where 1 2

m m mj j j− = = , 1 2
e e ej j j− = = . 

 
For the body of revolution electric and magnetic current densities are represented as Fourier 
series in azimuth, 
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Substituting (3) to (2), we obtain that for axially-symmetric bodies 2-D Muller IEs reduce to a 
set of 1-D IEs. In the kernels of these IEs, we separate the logarithmic singularities. As a result, 
we obtain the system of 4 IEs for each azimuthal harmonic of electric and magnetic currents,  
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where ( ) ( ) ( ) ( ) ( )( ), , ,M e M e M m M m MJ J J J Jτ ϕ τ ϕ= ,  
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( ) ( )MA τ  and ( ) ( ),MK tτ  are the matrices 4 4× , with elements ( ) ( ),

M
l mA τ  и ( ) ( ), ,M

l mK tτ  

, 1, 2,3,4l m =  respectively. The elements ( ) ( ),
M

l mA τ  are infinitely differentiable functions and 
( ) ( ) [ ] [ ]

2
, 1,1 1,1,M

l mK t C δτ −
− × −∈ , where 0δ > .  

To discretize IEs (5), we use quadrature formulas of interpolation type for the integrals with 
logarithmic and smooth kernels. The interpolation points are Legendre polynomial zeros. Using 
these quadrature formulas, we obtain the system of linear algebraic equation (SLAE) for 
interpolation points of currents interpolation polynomials, 
 

 
( ) ( ) ( )M M MA y b= , (6) 

 
where ( )My  is approximate values of the M -th azimuthal harmonic of electric and magnetic 
currents in the Legendre polynomial zeros, vector ( )Mb  is expressed through the values of 
primary field ( )MF  M -th azimuthal harmonic in Legendre polynomial zeros. Eigenfields are the 
fields, which can exist without primary field. They are expressed through equivalent currents, 
using (2), in the case of 0, 1,2inc inc

p pE H p= = =   

Electric and magnetic eigencurrents are solutions of (5) in the case of ( ) ( ) 0MF τ = . The 

corresponding approximate discrete equation is (6) in the case of ( ) 0Mb = . The matrix ( )MA  
depends on the wavenumber. Approximate values of the resonance wavenumber are such ones 
for which SLAE (6) has a nonzero solution for the zero right side, i.e. they are solutions of the 
following equation: 
 
 ( ) ( ) 0MA k = , (7) 

 
where ( ) ( )MA k  is the determinant of the matrix ( )MA  as a function of the wavenumber. To find 

a solution of (7), one can consider, for example, function ( ) ( ) ( )1 2 1 2, Mf k k A k ik= +  and find its 

minima using the gradient method. However, holomorphicity of the complex-valued function of 
complex argument ( ) ( )MA k  allows constructing more efficient method to find eigenvalue 

wavenumbers. For that we approximate ( ) ( )MA k  using a complex-valued interpolation 

polynomial with complex coefficients and then find its zeros using Laguerre method. Further the 
solution of (6) with a zero right-hand side is determined using Gaussian elimination method for 
the obtained eigenvalue wavenumber. This solution is a vector of eigencurrent approximate 
values in Legendre polynomial zeros. Through these values, eigenfields are expressed using the 
expression (2) and interpolation type quadrature formulas.  
 
Firstly, we can compare the results of described algorithm with analytical solutions for a 
dielectric sphere. The eigenfrequencies of dielectric sphere are the rootsα  of the following 
equations [1]: 
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m ε= , ε  is dielectric permittivity. 
For example, using (8) and (9) we obtain the following eigenfrequencies in the case 10ε =  (in 
any other case we will consider only this dielectric permittivity): ( ) 1.685800 0.055470

res
ka i= +  

for the mode 021
rTM , ( ) 1.775602 0.007603

res
ka i= +  for the mode 031

rTE . In Figs. 2, 3, we show 
relative error of presented method in the case of these modes 
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Fig.2 Relative error of the real part (left) of the eigenfrequency (right) and the quality-factor for 
the 021

rTM  mode.  
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Fig.3 Relative error of the real part of the eigenfrequency (left) and the quality-factor (right) for 
the 031

rTE  mode. 
 
The eigenfields of the 041

rTM  and 051
rTM  modes are shown in Fig.4. Corresponding values of the 

eigenfrequencies are 2.502083+i0.003448 and 2.885163+i0.000834. 
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Fig.4. The 041

rTM  and 051
rTM  mode eigenfields in the dielectric sphere with 10ε =  

 
In addition, the diffraction problem has been also solved. Suppose that a dielectric sphere is 
excited by an elementary dielectric dipole located inside the sphere as shown in Fig.5 (left) with 
the wavenumber, which equals to the real part of the 041

rTM  mode eigenwavenumber. We obtain 
a field very similar to the 041

rTM  field (Fig.5, right). 
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Fig.5. Dielectric sphere 10ε =  excited by dielectric dipole with ka=2.502083 
 
As a demonstration of the diffraction program I show in Fig 6,7 fields of dielectric sphere 
illuminated by the electrical dipole placed inside and outside the sphere. 
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Fig.6. Dielectric sphere with ka=4π and 10ε =  excited by a dielectric dipole placed outside the 
sphere. 
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Fig.7. Dielectric sphere with ka=4π and 10ε =  excited by a dielectric dipole placed inside the 
sphere. 
 
Spherical dielectric resonators are widely used in microwave engineering. Characteristic 
equations for dielectric sphere eigenfrequencies and eigenfields are well known. An interesting 
question can be formulated: can we deform a dielectric sphere so that the same mode in the 
obtained dielectric prolate or oblate spheroid would have larger quality factor than the dielectric 

sphere? The answer to this question is given in Fig.8, where quality-factor ( )
( )

Re
2 Im

res

res

k
Q

k
=

⋅
 as a 

function of spheroid deformation parameter b a  is shown for the mode 011TM . In Fig.8, we see 
that spheroids having 0.4b a =  and 2.9b a =  give almost twice larger Q-factors than the 
dielectric spherical resonator corresponding to 1b a = . In Fig. 9, we show magnetic eigenfields 
for three cases 0.4,  1,  2.9b a =  for the considered mode. 
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Fig. 8. Quality factor as a function of spheroid deformation parameter b a  for the 011TM mode, 

10ε = . 
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Fig.9. Magnetic eigenfield for spheroids 0.4,  1,  2.9b a =  in the case of 011TM  mode  
 
\ 
Dielectric spheroid with 0.85b a =  has slightly larger Q-factor than the dielectric sphere in the 
case of the 021TM  mode as shown in Fig.10. 
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Fig. 10. Quality factor as a function of spheroid deformation parameter b a  for the 021TM  mode, 

10ε =  
 
Numerical experiment shows that for the higher orders modes spherical resonator gives the best 
Q-factor (for zero azimuth index). As an example we show in Fig.11 the Q-factor as a function 
of spheroid deformation parameter b a  for the mode 031TE . 



 8

b a
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

0

20

40

60

80

100

120

3
Q

b
a

b
a

b
a

b
a

 
Fig. 11. Quality factor as a function of spheroid deformation parameter b a  for the 031TE  mode, 

10ε =  
 
Now consider a cylindrical dielectric resonator created by rotation of rectangular contour. We 
approximate this rectangle by a super-ellipse as shown in Fig.12. 
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Fig.12 A half of super-ellipse of the order 5,10N =  

 
Compare results of our numerical experiments with real experiments from [2,3]. Table 1 and 
Table 2 present the data for a dielectric pillbox with a = 5.25 mm, h = 4.6 mm, 38ε = . In Table 
3 presented are the data for dielectric pillboxes of (1) diameter=12.83, height=5.62, 38ε = and 
(2) diameter = 10.29 mm, height = 4.51mm, 79.7ε =   
 
 

  Computed by 
our method 

Measured [1] Measured [2] 

 01TE δ  0.534 0.533 0.533 

 01TM δ  0.829 0.824 0.836 

 
Table 1 Comparison of experimental and computed by our method normalized resonant 
wavelengths for a dielectric pillbox a = 5.25 mm, h = 4.6 mm, 38ε =  (height/diameter=0.4381) 
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  Computed by 
our method 

Measured [1] Measured [2] 

 01TE δ  40.89 51 46.4 

 01TM δ  78.66 86 58.1 
 
Table 2. Comparison of experimental and computed by our method quality factors for a 
dielectric pillbox with a = 5.25 mm, h = 4.6 mm, 38ε =  (height/diameter=0.4381) 
 
 

  Computed 
frequency(GHz )

Measured 
frequency(GHz )

Computed Q-
factor 

Measured Q-
factor 

1) 01TE δ  3.984 3.967 40.9 46.4 

1) 01TM δ  6.169 6.133 77.8 58.1 

2) 01TE δ  3.474 3.479 111.3 118.9 

2) 01TM δ  5.392 5.407 466.5 416.9 
 
Table 3. Comparison of experimental and computed by our method resonance frequencies and 
quality factors for dielectric pillboxes of (1) diameter=12.83, height=5.62, 38ε = and (2) 
diameter = 10.29 mm, height = 4.51mm, 79.7ε =  
 
We compare the results of presented method with the results of other theoretical methods for a 
dielectric circular cylinder [4-6] and show them in Tables 4 and 5. 
 
 

  Our method Theory [3] Theory [4] Theory [5] 
 01TE δ  0.534 0.531 0.534 0.53 

 01TM δ  0.829 0.827 0.829 0.827 
 
Table 4. Comparison of normalized resonant wavelength computed by our method with ones 
computed by the methods [4-6] for dielectric pillbox for dielectric pillbox a = 5.25mm, h = 
4.6mm, 38ε = . 
 
 

  Our method Theory [3] Theory [4] Theory [5] 

 01TE δ  40.89 45.8 40.8 47 

 01TM δ  78.66 86 76.9 71 
 

Table 5. Comparison of quality factors computed by our method with ones computed by the 
methods [4-6] for a dielectric pillbox with a = 5.25 mm, h = 4.6 mm, 38ε = . 

 
 
In Fig.13, the lowest modes of a dielectric circular resonator in the logarithmic scale are shown. 
They are in good agreement with data of [4] 
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Fig.13. Magnetic field patterns for the 01TM δ  and 01TE δ  modes of a dielectric circular 
cylindrical resonator with a = 5.25mm, h = 4.6mm, 38ε = . 
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