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SCIENTIFIC REPORT 

 
Summary 
In this project we have considered the simulation of 2-D dielectric resonators in free space 

using the Muller Boundary integral equations (BIE). We have developed interpolation-type Nystrom 
method of the BIE reduction to the discrete form that has theoretically proven convergence. Here, 
convergence is understood in mathematical sense, as a possibility of progressive minimization of the 
error of computations by taking the greater orders of interpolation scheme. Implementing the 
developed algorithm we have performed a systematic numerical analysis of the natural frequencies 



and also the near and far-zone fields for the natural modes of the dielectric-resonator shaped as a kite 
with the contour changing from fully convex to partially concave. The influence of the deviation from 
the circular shape on the modal characteristics has been studied numerically, demonstrating the 
opportunities of improvement of directionality of the far-field emission. Comparison with 
experimental measurements made in Cachan for large-size dielectric resonators used in microlasers 
has shown qualitative agreement in far-field radiation patterns. 

 
Motivation and goal 
Dielectric resonators are ubiquitous building blocks of various electromagnetic-wave systems 

across a wide spectrum of frequencies, from millimetre waves to the visible range, and applications. 
This is explained, in part, by the availability of modern low-loss materials and also by the fact that the 
metals become prohibitively lossy at higher frequencies. One of the most important applications of 
dielectric resonators is in the design of antennas, where the high Q-factor of a resonating mode enables 
one to raise the radiation resistance (i.e. the power at the fixed current) of primary feed. Another 
important application is the design of laser sources of the terahertz, infrared and visible ranges: in this 
case the main part of the device is a semiconductor cavity, which can be conveniently considered as a 
dielectric resonator equipped with an active region. Because of intrinsic necessity of radiation into 
outer space, any such laser can be viewed as an active dielectric resonator antenna. 

On the other hand, many other electromagnetic devices with different operation principles may, 
unwillingly for the designer, display their resonant properties if made of dielectric. As an example of 
this effect one can find in the spoiling of the focusing ability of a finite-size dielectric lens if the 
wavelength comes near to one of the natural-mode wavelength. All mentioned makes the task of 
accurate analysis of dielectric resonators a hot topic in today’s electromagnetic theory. This is, 
however, a complicated task as analytical solutions can be built only for separable configurations such 
as circular cylinders and spheres. Still many resonators are shaped as thin flat structures. In this case  
one can reduce the dimensionality of the problem from 3-D to 2-D however the bulk dielectric 
permittivity has to be replaced with its (frequency dependent) effective value and the electromagnetic 
field is considered in the resonator median plane only. 

Therefore my goal during the “Newfocus” exchange-grant stay in Cachan has been the development 
of several novel and efficient numerical techniques for the computation of natural modes of 2-D 
dielectric resonators of arbitrary shape. The same techniques are equally applicable to the analysis of 
the wave scattering by corresponding configurations. 

 
Background 
As known, dielectric resonators shaped as thin flat circular disks with smooth enough rims 

demonstrate very high Q-factors however very low directionality of the whispering-gallery modes [1-
4]. Here, each mode with azimuth index 0m >  is double degenerate and their emission is 
predominantly in the dielectric resonator plane. The directivity is equal to 2 because of many identical 
beams corresponding to the cos mϕ  or sin mϕ  dependence (ϕ  being the azimuth coordinate). In 
practical applications, however, it is required to have dielectric resonator antennas with larger 
directivity of emission to enable processing of signals with higher efficiency and within smaller space. 

As evident, improvement of directionality of mode emission needs a departure from circular 
shape. Therefore since the 1990s researchers engaged in the dielectric resonator studies have been 
using the cavity shape as an engineering tool able to provide better directionality [5-24]. Among the 
promising modified shapes, they have considered fully convex contours like ellipse, stadium, cut 
circle, various regular polygons, and others [9-13], and also partially concave “notched” contours” 
[14,15]. Probably the highest expectations and the largest amount of efforts have been associated with 
a spiral resonator, whose in-plane contour follows an Archimedean spiral with a small step [17-21]. 
The later efforts have been associated with a smoother shape provided by the limacon curve [22-24]. 
Following similar considerations, it is possible to find other smooth perturbations of the circle; one of 
them being a curve called “kite” that we have selected for a detail analysis. Unlike a limacon, a kite is 
always smooth although it can be both fully convex and partially concave depending on the 
perturbation parameter.  

In this work, we have used the Muller boundary integral equations (BIEs) [25,26] as a reliable 
and efficient tool for the analysis of electromagnetic field in the presence of a 2-D homogeneous 



dielectric object with arbitrary smooth boundary. This is because other types of BIEs suffer of serious 
drawback: they possess infinite number of “spurious eigenvalues” – real numbers that are the 
eigenvalues of the interior electromagnetic problem where the boundary is assumed perfectly 
electrically conducting and the inside filling has material parameters of the outer medium (e.g., free 
space) [27]. The spurious eigenvalues have no physical meaning and hinder the search of true complex 
eigenvalues. Examples of such IEs can be found in [10,15,18,19,21,23,24]; it should be added that 
these IEs can be still used for the search of low-Q eigenvalues. 

In 2-D, Muller BIE is, in fact, two coupled equations. Besides of being free of spurious 
eigenvalues, they are attractive because they are of the Fredholm second-kind type, i.e. have smooth or 
integrable kernels. The Muller BIEs can be discretized either with collocations [28] (i.e., meshing the 
boundary and introducing local basis functions; this is sometimes called the boundary-element 
method, BEM) or with a Galerkin-type projection to global expansion functions [26]. As dielectric 
resonators commonly have convex or at least star-like boundaries, the latter way leads to a more 
economic algorithm, although the both possess a convergence thanks to the Fredholm theorems. 
Within the “Newfocus” project I have been building efficient and convergent numerical algorithm 
based on the interpolation polynomials and the quadrature formulas as suggested in [29,30]. 

 
Formulation 
We denote the smooth boundary of a generic 2-D open dielectric resonator as Γ , the outer 

domain as eD , and the inner domain as iD . We assume that n  is the outer normal unit vector to the 
boundary Γ , and jν  ( ,j i e= ) are the refractive indices of the non-magnetic resonator material and 
the outer space, respectively. The time dependence exp( )i tω−  will be assumed and omitted. The inner 
domain is filled with dielectric material so that the associated refractive index is iν . The outer space is 
assumed lossless, 0e eν α= > .  

The passive dielectric cavities ( Im 0iν ≥ ) are known to possess infinite number of discrete 
complex-valued natural frequencies or, equivalently, wavenumbers sk  ( Im 0sk < ), each of which 

generates the corresponding non-zero electromagnetic field function, { },s sE H . The field functions 

grow in space as Im( )sk RO e− . Therefore, to avoid dealing with complex sk  and non-physically growth 
of the field functions, we will assume that the dielectric resonator is filled in with a gain material, i.e. 
is active. This can be characterized using the complex-valued refractive index, i i iν α γ= −  where 

0γ > . The presence of the gain region (here coinciding with the whole dielectric-resonator domain) 
enables compensation for the radiation losses of any specific mode and makes its natural wavenumber 

sk  real-valued. The associated value of 0sγ >  is generally different for different modes and 
corresponds to the threshold gain in the resonator material [31].  

Mathematically, the problem of finding the values of sk  and sγ , and also the modal fields 

{ },s sE H  in the near and far zones makes an electromagnetic eigenvalue problem (similar to the 

scattering problem but without the incident field). In view of the 2-D cavity studied here, to 
characterize the electromagnetic field we can consider a scalar function jU  that is the field component 

zE  or zH , depending on the polarization, in the domains jD , ,j i e= . It must be a solution to the 
boundary-value problem for the Helmholtz equations with the continuous boundary conditions on Γ , 
and additional conditions of (i) local power finiteness and (ii) outgoing-wave behavior (Sommerfeld 
radiation condition) for eU  at infinity [3, 26]. The task is to find such values of pairs of real numbers 
( , )s sk γ  that generate non-zero functions , ( )i eU r . Note that the real value of sk  means that the natural 
mode at the threshold of lasing does not attenuate in time and decays in space as a usual cylindrical 
wave, ~O(r - ½ ). Thus, the introduction of the active region into a dielectric resonator leads to 
physically reasonable modal field behavior. 

 
 



Basic equations 
For either of two alternative polarizations, the reduction of the 2-D electromagnetic-filed 

eigenvalue problem to a BIE is based on the use of the Green’s formulas [25,29]. Then from the 
boundary conditions we obtain 
 ( ) ( ) ( , ) ( ) ( , ) 0r r A r r dl r B r r dlϕ ϕ ψ
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The Green’s function of a homogeneous medium having refractive index iν  is 
(1)
0( , ) ( / 4) ( )j jG r r i H k R′ = , where R r r′= −  is the distance between the points r  and r′ , and 

(1)
0 ( )H ⋅  is the Hankel function of the first kind and zero order. We defined that , ,i e i ek kv= , the 

constants 2
, ,1 /i e i eη ν=  in the case of the H -polarization and , 1i eη =  in the case of the E-polarization. 

The normal derivatives are calculated after the following expressions: 
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The quantities ( ), ( )R n R n′⋅ ⋅  and ( )n n′ ⋅  are the scalar products of the corresponding vectors.  
Thus, the kernels of the Muller BIE are the linear combinations of either the Green’s functions 

of the homogeneous media having parameters of the outer and inner media, or their normal derivatives 
of the first and second order. Assuming that the contour parameterization is performed with the aid of 
the function { }( ) ( ), ( )r t x t y t= , we find that the kernel functions ( , )A t τ in and ( , )D t τ  in are 
continuous at all points of a smooth contour, and the kernel functions ( , )B t τ  and ( , )C t τ  have 
logarithmic singularities. Note that the kernel ( , )B t τ  is singular only in the case of the H-polarization; 
in the case of the E-polarization it is continuous.  

As mentioned, there are several ways of reasonable discretization of BIEs. One of the most 
efficient discretization techniques is the method of quadratures also known as Nystrom method 
[29,30,32-34]. This method is based on the approximation of smooth unknown functions by certain 
polynomials and the replacement of the integrals with approximate sums using the appropriate 
quadrature formulas. Therefore the center point in the development of corresponding numerical 
algorithms is placed on the derivation of the quadrature formulas that correctly take into account the 
behavior of the integrand functions and first of all their possible singularities. 

We consider the discretization of integral equations with closed contours of integration that 
admit a regular analytical 2π -periodic parameterization with the aid of a function { }r( ) ( ), ( )t x t y t= , 

[ ]0,2t π∈ . As some of the kernel functions have logarithmic singularities, it is convenient to represent 
all of them in such a way that these singularities are extracted; such decomposition is done for the 
smooth kernels as well 
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where 1 1 1( , ), ( , ), ( , )A t B t C tτ τ τ  and 1( , )D t τ  are the analytic functions defined as follows: 
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The functions 2 2 2 2( , ), ( , ), ( , ), ( , )A t B t C t D tτ τ τ τ  are found from (5) with account of (3)-(4). 

Further, we introduce an equidistant mesh of nods on the contour Γ  at /pt p Nπ= , 0,1,..., 2 1p N= − . 
The integrals of the each part of kernels are replaced with the sums using the quadrature formulas. For 
the logarithmic parts we use the quadrature formula derived through the approximation of the 
integrand function with trigonometric polynomials [29,30,32-34], 
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polynomial. For the other, continuous parts of kernels we use the trapezoidal rule ([35]). In the 
formulas (7) it is implied that 1 1 1 1 1, , ,F A B C D= , and also ,f ϕ ψ= . The function ( )L t  is the Jacobian. 

On the replacement, in the integral equations (1) and (2), of the integrals with the quadratures 
we arrive at the following matrix equation of the size 4 4N N×  
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Every block has the size of 2 2N N×  and its elements are given by 
 

 

{ }
{ }
{ }

2 1( )
1 2 , 0

2 1( )
1 2 , 0

2 1( )
1 2 , 0

( )
1

( ( ) ( , ) ( / ) ( , )) ( ) ,

2 / ( )( ( ) ( , ) ( / ) ( , )) ( ) ,

( ( ) ( , ) ( / ) ( , )) ( ) ,

2 / ( )( ( ) ( , )

NN
p s s p s p p p s

NN
e e i p s s p s p p p s

NN
p s s p s p p p s

N
e e i p s s p

A P t A t t N A t t L t

B P t B t t N B t t L t

C P t C t t N C t t L t

D P t D t t

π

η η η π

π

η η η

−

=

−

=

−

=

= +

= + +

= +

= + +{ }2 1

2 , 0
( / ) ( , )) ( )

N

s p p p s
N D t t L tπ

−

=

                        (10) 

 It is convenient to introduce dimensionless value of kaκ =  where a is some characteristic 
dimension of the 2-D dielectric-resonator. Then, the eigenvalues ( , )κ γ  are the roots of determinantal 
equation [ ]det ( , ) 0k γ+ =I A . 
 Considering the accuracy of computations, we can note that if the integrand function is 
analytic and 2π -periodic, then, according to [29], the error of interpolation has the order of 

[ ]exp( )O Nσ− , where 2N is the number of nods in the quadrature and σ  is the half-width of the strip in 



the complex plane to which the integrand functions 1,2 ( , ) ( ) ( )F t f Lτ τ τ  can be continued 
holomorphically. 

Further we present the numerical study of the H-polarized lasing modes of a 2-D dielectric-
resonator shaped as a kite, Here, we can consider the cavity contour as a deformed circle and therefore 
study, in fact, the effect of the perturbation of the circle on the spectrum of frequencies and thresholds 
(or Q-factors) and also on the directionality of the emission. As a kite-contour parameterization, we 
use 2π-periodic analytical functions  

 
( ) (cos cos 2 ), ( ) sinx t a t t y t a tδ δ= + − = ,                                              (11) 

where a is the radius of a circular cavity in the limiting case of 0δ = ; we have studied in detail the 
cases of a fully convex contour for 0.165δ =  and a partially concave contour for 0.5δ = .  

In Figs. 1 (a) and (b), we present the dynamics of the modal frequencies and thresholds in the 
kite dielectric resonator with varying deformation. Here, the curves for two pairs of modes are 
presented. One originates from two degenerated at 0δ =  dipole modes of the 1,4H  type that have no 
whispering-gallery (WG) behavior. The other is related to two degenerated at 0δ =  modes of the 10,1H  
type that are clearly WG modes - to emphasize this, we will denote them as quasi- 10,1WGH . So far as 
the deformation is small, at least if 0.15δ < , all four modes display similar behavior and actually WG-
like modes are nearly degenerated while the non-WG modes become essentially split only in terms of 
the frequency. More dramatic changes happen if δ is getting larger end especially around and after the 
critical value of 0.251 where the kite obtains a concave part of the boundary. Each mode keeps its field 
function parity across the x-axis however its field pattern varies considerably. Note that the theorems 
of operator-valued function analysis guarantee that each ( )sk δ  and ( )sγ δ  are continuous functions of 
the argument. We label the corresponding continuous modal branches as I, II, III, and IV. 
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Fig. 1. Frequencies (a) and thresholds (b) as functions of the kite deformation parameter δ, for the 
doublet of quasi-WGH

10,1
 (green and black lines) and quasi-H1,4 (blue and red) modes, α = 1.5, N = 50. 

Marks I to IV correspond to similar marks in Fig. 2 and 3. 
 
Figs. 2 and 3 demonstrate the amplitude near-field and far-field patterns for the doublets of 

modes 1,4H  and 10,1WGH  in a little-deformed convex kite-shaped dielectric-resonator and their 
eventual counterparts for the large deformation, respectively. The labels I to IV correspond to the 
marks in Figs. 1 (a) and (b). These field patterns enable one to see how the progressive deformation 
turns some of the initially WG-like modes into the Fabry-Perot (FP) like and volume modes. In 
addition, the field patterns of the mode in Fig. 4 demonstrate that in a strongly deformed kite cavity a 
specific family of modes appears which adapt themselves to the appearance of concave part of the 
boundary. We have called them “horse shoe-like” (HS-like) modes; they can be viewed, from the one 
hand, as a partial WG-like mode standing along the part of the dielectric-resonator boundary that is 



still concave and, from the other hand, as a specific FP-like mode standing along the curved path 
between two most curved parts of the same boundary. HS-like modes also have rather low thresholds 
and radiate predominantly into the halfspace where the concave part of the contour is looking to. 

Far-field expression for the mode field can be obtained using the asymptotic of the Hankel 
function for the large argument. This leads to the following formula: 
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where θ  is the angle of observation and ( )θΦ  is the far-field angular pattern,  
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The directionality of mode emission can be conveniently characterized using the quantity 

borrowed from the antenna theory and called directivity, 
 

 
2

2 2
max

0

2 | ( ) | , | ( ) |D P d
P

ππ θ θ θ= Φ = Φ∫ , (14) 

 
where maxθ  is the angle of the main beam radiation in the halfspace 0 θ π≤ ≤  and P is, within a 
constant, the total power radiated by a lasing mode.  

The values of directivity associated with each mode are also indicated in Figs. 2, 3 and 4. Note 
that all modes of a circular resonator with azimuth index 1m >  and far-field patterns ( ) cos mθ θΦ =  
or sin mθ  have D = 2 and that omni-directional emission for 0m =  results in D = 1. Note also that an 
x-odd mode cannot have less than two main beams and thus it displays generally (although not always) 
smaller values of directivity than its sister-mode of the x-even parity. As visible, the directivity of any 
mode of the kite cavity is larger than for the unperturbed WG mode of the circle. 
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Fig. 2. Near- and far–field patterns of |Hz| for two modes that form the quasi-WGH

10,1
 doublet (I), (II) and quasi-

H
1,4

 doublet (III), (IV) in a kite with δ = 0.165. These patterns correspond to the marks in Figs. 1. Mode (I) is an 
odd WG-like one with κ =8.8511, γ = 7.352*10-2, D = 3.86. Mode (II) is an even WG-like one with κ = 8.8534, 
γ = 7.076*10-2, D = 3.33. Mode (III) is an odd FP-like one with κ = 8.8105, γ = 8.884*10-2, D = 3.54. Mode (IV) 
is an even FP-like one with κ = 8.733, γ = 9.207*10-2, D = 2.8. Other parameters are N = 50, α = 1.5. 
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Fig. 3. The same as in Fig. 2 in a kite with contour parameter δ = 0.5. These field patterns correspond to marks in 
Figs. 1. Mode (I) is an odd FP-like one with κ = 9.0367, γ = 9.655*10-2, D = 3.49. Mode (II) is an even FP-like 
one with κ = 8.9111, γ = 0.1022, D = 3.23. Mode (III) is an odd volume one with κ = 8.7076, γ = 0.135, 
D = 4.08. Mode (IV) is an even volume one with κ = 8.3764, γ = 0.1117, D = 3.95. 
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Fig. 4. The same as in Fig. 3. Horse-shoe like mode is an odd one with κ = 9.0652, γ = 8.1136*10-2, D = 5.65. 
Other parameters are N = 50, α = 1.5. 
 

Conclusions 
In this project we have considered 2-D model of the uniformly active dielectric resonator with 

a smooth contour. As an instrument of analysis, we have used the Muller BIE adapted to the extraction 
of the lasing spectra and thresholds via the LEP formulation. We have also developed interpolation-
type Nystrom method of the BIE reduction to the determinantal equation that has theoretically proven 
convergence. Here, convergence is understood in mathematical sense, as a possibility of progressive 
minimization of the error of computations (hence limited only by the machine precision) by taking the 
greater orders of interpolation scheme. Implementing the developed algorithm we have performed a 
systematic numerical analysis of the natural frequencies and thresholds, and also the near and far-zone 
fields for the modes of the dielectric-resonator shaped as a kite with deformation parameter changing 
the smooth contour from fully convex to partially concave.  

In the kite resonator, the deformation of the contour from the circle leads to removal of the 
mode degeneracy and appearance of doublets. The kite-cavity modes that are the perturbations of the 
WG modes whose fields have been confined at the rim of the resonator are perturbed by the 
deformation in such a way that the thresholds of the both modes in a doublet monotonically grow up if 
the parameter δ gets larger. However they still keep relatively low values close to their (exponentially 
small) circular-cavity thresholds if the peak curvature of the kite contour remains close to unperturbed 
value. The critical value of the deformation parameter is 0.251δ ≈  where the contour becomes 
partially concave. For the values of δ  approaching 0.2 and larger, there are no modes whose fields 
display WG-like behavior along the whole boundary – all of them turn either to the FP-like modes or 
the other volume modes whose field spots are formed deep inside the kite cavity although HS-like 
modes show a string of brighter spots along the convex part of the boundary. The material thresholds 
of all modes of a concave kite are around the level of 0.1γ ≈  typical for the non-WG modes. 



The directivities of the WG-like modes in a fully convex kite deformed with 0.2δ <  can 
increase to 6-7 and show formation of a few well-shaped main beams of emission in the far zone. 

The comparison of the measured spectral compositions of kite-shaped dielectric-resonators for 
microlasers and their far-field patterns with the computed spectra and patterns has enabled us to 
clearly identify the FP-like and the WG-like modes in both cases. The measured emission patterns and 
the computed ones show good qualitative agreement both in the directions of most intensive radiation 
and the “shining” parts of the cavity contour. The measured values of the lasing thresholds have 
displayed the expected difference between the WG-like modes and the FP-like ones, the latter being 
considerably higher than the former.  
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