
 Research Networking Programmes

Short Visit Grant or Exchange Visit Grant

(please tick the relevant box)

Scientific Report

The scientific report (WORD or PDF file – maximum of eight A4 pages) should be
submitted online within one month of the event. It will be published on the ESF
website.

Proposal Title: Boosting for Learning to Rank with Query Log Data

Application Reference N°: 4907

1) Purpose of the visit

The purpose of my visit to the University of Amsterdam,
concretely the Information and Language Processing Systems (ILPS)
research group, was mainly to help me to start up my research on
developing better “learning to rank” algorithms. At my home
university, Czech Technical University in Prague, there is no expert or
research group in the field of Information Retrieval. The small research
group I am a part of has just begun to profile as such, hence the visit to
ILPS was a remarkable opportunity for me to find out how a big and
successful research group, which ILPS certainly is, works, and bring the
lessons learned and try to implement them in our group.

Another very important motivation for me was to hopefully start
up on a joint (long-term) project, which would allow me to keep in
touch and continue to do the research with ILPS. I am happy to write
down that this wish had come true. I can only wish the current findings
of our joint effort had turned out more positive.

2) Description of the work carried out during the visit

During the visit I was studying ensemble learning to rank models,
which were found to work the best in the field of learning to rank. I was
focusing mainly on LambdaMART, the current state-of-the-art learning

to rank algorithm, and was working on its implementation. I could have
used an existing implementation, such as the one in RankLib
(http://sourceforge.net/p/lemur/wiki/RankLib/), which is implemented in
Java, but in order to be able to change things and understand all the
gory details of it, I really needed to do the implementation myself.
Since my language of choice is Python I found it very difficult to create
an efficient implementation. Having an efficient implementation is very
important because I am working with a dataset (which is provided by
Seznam.cz the Czech commercial search engine) with hundred of
thousands of queries and millions of documents, which can easily make
the training times to exceed several days. In the end it was not wasted
effort and the implementation is now available as an open-source
project called RankPy (https://bitbucket.org/tunystom/rankpy). In terms
of efficiency it is a favorable competitor to RankLib.

After finishing the baseline implementation I started my first
experiments with it. LambdaMART is an iterative gradient boosting
regression tree ensemble model and as such it has myriad of
parameters, such as number of trees, maximum depth of trees,
learning rate, etc. My obvious interest was to see how robust the
algorithm is to different parameters settings and how robust is against
label noise (which boosting algorithms usually fall victim to, and their
performance degrades with increasing noise). I also conducted several
experiments to compare the LambdaMART model, which is a list-wise
learning to rank model, with different “point-wise” ensemble models
(either classification or regression models), such as RandomForest,
MART, McRank. Figure 1. illustrates the training and test performances
of the listed models on the commercial dataset.

Figure 1: Performances of models (from left to right): LambdaMART,
MART, McRank, Randof Forest regressor, Random Forest classifier.

http://sourceforge.net/p/lemur/wiki/RankLib/
https://bitbucket.org/tunystom/rankpy

The robustness against noise in labels was tested by training
models (in this case MART and LambdaMART) on the dataset with
different amount of (uniform) noise added to the document relevance
labels. Figure 2 illustrates the results of evaluating the performances of
the “noised” models (models trained on noised data) on the original
dataset in terms of NDCG (with and without cutoff threshold). These
two models were chosen because they are both from the family of
gradient boosted tree models but apart from LambdaMART, MART is a
“simple” regression model (the target variable is the document
relevance). It may seem surprising that MART is beating LambdaMART
the more noise is added to the relevance labels (for 0% noise the
models reach similar results with an insignificant favor (in absolute
numbers) towards MART). My explanation is that for MART the noise in
documents is acting independently, but for LambdaMART, a noised
document influences all the other documents for the same queries.
These dependencies, which result from the way the lambdas in
LambdaMART are computed (put simply, lambda of a document is a
'cumulative' gradient of the loss function with respect to the output of
the ranker evaluated at the given document) make the noise to have
greater impact on the performance of the model.

The very surprising behaviour of LambdaMART is that it does not
overfit with the increasing number of trees. In this regard it has similar
behaviour to a random forest model. Figure 3 below illustrates the
typical training (in red) and validation (in blue) NDCG performance of
LambdaMART during training. The learning curves will eventually

Figure 2: Influence of (uniform) label noise on performance.

flatten out, but even going extreme and training up to 10,000 trees I
was not observing any sign of overfitting, which would be detected by
dropping red line.

Very interesting is also to observe the influence of the learning
rate on the training process. Figure 4 is the same model that was used
to plot Figure 3, but the learning rate was decreased from 0.1 (typically
works the best – a rule of thumb value) down to 0.01.

From the progress at around 200 trees it seems like the model hit
a sort of local optima, but it was capable of “crawling out” of it. Certain
point of interest was to examine the importances of features (defined
in Breiman, Friedman, "Classification and regression trees", 1984) from
LambdaMART. Figure 5 illustrates a typical feature importances plot.
This plot reveals that more than 10% (there ~300 features) of features

Figure 3: LambdaMART learning curves.

Figure 4: LambdaMART learning curves

are never used and tests revealed that we can forget more than ½ of
the features without affecting the performance of the model.

Final piece of insight into working of the LambdaMART model was
to see what portion of the lambdas (accumulated gradients of the
pairwise loss function used by LambdaMART with respect to the output
of the ranker) of relevant documents were made from interactions
(comparisons) with less relevant documents. This approach was
adopted from Krysta Svore et al, “Learning to Rank with Multiple
Objective Functions”, WWW'11. Figure 6 illustrates the “influence” of
less relevant documents on the correct ranking of the most relevant
documents.

Figure 5: Feature importances found by LambdaMART

Figure 6: Lambda Influences of less relevant on most
relevant documents.

This figure goes hand in hand with the learning curve plots depicted in
Figure 3. If we interpret the figure such that the points in the graph
depict the (average) force with which all less relevant documents
(different colors show different relevance levels, maximum relevance
label is 5) push the most relevant documents up at each iteration of
boosting, than it can be clearly seen from the Figure 3 that
LambdaMART's performance boost starts to stagnate after around 200
iterations. At the same moment the influences of all the less relevant
documents start to converge on its “limiting value”, see Figure 6. It is
also very important to note that the influences of less relevant
documents is still very high – clearly the LambdaMART benefits from
separating irrelevant documents from perfectly relevant ones (falling
red curve), i.e. putting relevant documents up in the list and irrelevant
documents down, but as we can see in Figure 6, the model completely
fails to mimic the same behaviour with documents of higher relevance.
Fixing this LambdaMART's “drawback” has become an appealing target
of my research, since the mentioned work by K. Svore have not
provided satisfactory solution (according to me) and I have not found
any particular development in this line of thought. This issue reminds
me of a similar problem in classical boosting (not gradient boosting)
which Yoav Freund “solved” by his Boost by Majority algorithm (“noise-
resistent” AdaBoost). This does not easily translates into the context of
learning to rank, but certain similarities between the aforementioned
works can be found.

My original ideas with using click logs and train LambdaMART
from pairwise preferences inferred from them (and clicks throughout
whole user sessions) have been postponed by my reluctance to start
working on a problem before I fully understand the LambdaMART
model (and gradient boosting generally) and the issues associated with
learning from clicks. The former I could have done anywhere, but I
think there is no better place where to find out all about the problems
associated with inferring relevance from clicks than the ILPS research
group itself. The visit has armed me with a lot of knowledge I did not
posses, and I know that I would have taken a wrong approach and
would come to wrong conclusions if I did not get it first.

I also spent substantial part of my visit working on a joint project,
which is build upon the hypothesis that an ensemble of specialized
rankers – each ranker is trained on queries, which share common
structure/intent – can work better than one global ranker. The work
that was done before my visit supported the hypothesis, but similarly
to previous works on this topic (e.g. “Ranking Specialization for Web
Search: A Divide-and-Conquer Approach by Using Topical RankSVM” by
Bian J. et al, “Learning to Rank User Intent” by Giannopoulos et al.) it
was based on linear ranking models. Since I am focused on ensemble
models it was theorized whether similar results would be acquired
when such models like LambdaMART were used.

The query clustering methodology is very similar to previous
works, a ranking model is trained for each query and the clustering is
made by using distance metric (or similarity) defined on the models.
This is very clear in case of linear models, in which case euclidean
distance between weight vectors of the rankers are used as the
(dis)similarity between the queries associated with the models. What is
not clear is how this can be done with a models based on trees. Here,
comes the ingenious idea not to use the rankers themselves, but the
way the models rank the queries. I will withheld the details of our
approach for future publication, but it can be said that Kendall Tau
distance metric between rankings is used as the clustering metric.
Figure 7 depicts the distance matrix, rearranged according to the
results of an agglomerative clustering algorithm, for MSLR dataset
(with filtered 10k queries), where the query models were linear models
trained via Duelling Bandit Gradient Descent.

The clusters were validated such that the performance of the
models trained on (training) queries from the individual clusters were
compared with the performance of one global model, trained on all
(training) queries. The testing queries were selected out of the same
cluster. It turned out that the local (cluster) rankers are defeating the
global ranker, which has supported the original hypothesis. But there is
a huge if – in the model comparisons we are “cheating”, because in
real life we do not know which local ranker to use on a new test query,
and because the ensemble ranker is not only as good as its individual
rankers, but it also heavily depends on the quality of the membership
function the result must be taken just as a small step towards
developing a better ensemble ranking model.

Figure 7: Query/models distance matrix. Each element correspond to a distance between
associated queries/models. The black squares on the diagonal are typical for successful
clustering.

As I mentioned earlier the clustering with linear models has been
already accomplished, I only validated the results and made a few
adjustments to make the process less time-demanding. My job was to
take this idea and try to accomplish similar results with more complex
models, such as MART, LambdaMART, RandomForest. Sadly, I need to
state that the current results are unsatisfactory, i.e. based on them we
cannot refute nor support the clustering hypothesis. Figure 8 depicts
one out of many clusterings which came out for LambdaMART (all other
models that were tested came out with similar results).

The figure hardly shows presence of any clusters. Why it is the
case that the approach is not working with any of the more complex
models was not yet fully identified. It seems that for query model
comparisons there is too much variance within the structure/ranking
behaviour of the ensemble models (compared to linear models), which
has not been successfully accounted for in cross-validation (which is
performed despite the fact that we are training the models on single
queries). Overfitting is not an answer since on a single query the linear
model overfits as easily as LambdaMART.

Finally, I would like to mention I was also attending the
Information Retrieval courses and have an opportunity to give a
presentation about LambdaMART and Learning to Rank. I have also
collaborated on a paper under the working name “A Comparison of
Retweet Prediction Approaches” with Hendra Bunyamin and Maarten
de Rijke, which is planned to be submitted on ASONAM 2015.

   

Figure 8: One out of many bad distance matrices made by clustering LambdaMART
models for queries.

3) Description of the main results obtained

So far my individual work (described in the previous section) was
more of an exploratory nature, hence the results worth to mention
according to me are the development of the first practically usable
implementation of LambdaMART in Python. The implementation
through its visualization capabilities and logged information is very
practical to get insight into the inner workings of the model. Thanks to
these insights I was capable to see the “flaws” in the algorithm and
thanks to having implemented all the gory details myself I am more
than ready to make an experimental changes that I hypothesize could
make it work better.

The current results of the joint project (described in the previous
section) would deserve to turn out better but the work so far resulted
in a new framework for query clustering which is now used to run
further experiments. The disappointment that the clustering is not
working for LambdaMART is at least making me try to develop a
method that would reveal whether or not the model (for its complexity)
can cluster queries in some sense “internally”.

4) Future collaboration with host institution (if applicable)

I am still working and hopefully will be cooperating in the future
with Masrour Zoghi, who was my contact person at the University of
Amsterdam. The joint project was described in the Section 2 – the
ultimate goal of the project is to devise an ensemble of query
specialized rankers, which would work significantly better than one
single ranking model. Current search engines are usually running on
the latter, i.e. have a single ranking model and does not take into
account the different nature of various queries. Hence there lies the
potential to make a practical impact on the field of information
retrieval if our efforts succeed.

5) Projected publications / articles resulting or to result from the grant (ESF
must be acknowledged in publications resulting from the grantee’s work in
relation with the grant)

No publication from my own work neither from the joint project
have been submitted yet, but it is certainly planned. I am currently
working on a broad technical report summarizing my findings and work
done during my visit. I certainly acknowledge ESF's support in any
publication that will results from the work I did during my stay at the
University of Amsterdam. As for the joint project, I am not the leading
person behind it (Masrour Zoghi is), but as a major collaborator I can
make sure that the acknowledgement will be part of the publication,
which I can refer to as “Query Specialized Clustering”.

6) Other comments (if any)

I feel that I need to express my deep gratitude to professor
Maarten de Rijke, the leader of the Information and Language
Processing Systems (ILPS) research group at the University of
Amsterdam, for letting me stay and be for a short while a part of an
amazing collective of smart and motivating people. I would especially
like to thank to Masrour Zoghi who has become my colleague and who
has played the role of my supervisor during the visit. I am very grateful
that I can continue to do the research with him and discuss with him all
the crazy ideas that are constantly coming on my mind.

To make long comment short, the stay at ILPS for me was a very
eye opening and mind broadening experience, which will certainly
influence the way I do my work. For giving me this opportunity I need
to send my kindest regards to ESF as well because without its financial
support it would not be possible for me.

