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The Quantum Vacuum and the Casimir Effect

State of the art.The Casimir force [1] is maybe the

Figure 1: Original geometrical configuration

used by H.B.G. Casimir in 1948. Two planar

parallel mirrors, which are facing each other in

quantum vacuum, are attracted to each other.

For two mirrors with a surface of 1cm2, sepa-

rated by a distance of 1µm, it equals 0.1µN.

most accessible experimental consequence of vacuum fluc-
tuations in the macroscopic world (see fig.1). It is compa-
rably small but recently it has been measured with modern
experimental techniques and several experiments reached
an accuracy in the % range [2]. An accurate comparison
with theory of the measured Casimir force is a key point
for the experiments searching for new short range weak
forces predicted in theoretical unification models. Simi-
lar experiments were also performed with Micro-Electro-
Mechanical Systems (MEMS) [3, 4], promising tiny de-
vices containing metallic elements on a micron/submicron
scale. Due to the small distances between its elements, the
Casimir force becomes very important for these systems.

The Casimir force could represent a useful tool to con-
trol ultracold atoms at an the same time the precision
attained in manipulate ultracold atoms can be used to probe the casimir effect. For instance, very
recently [5] Eric Cornell and his colleagues at the University of Colorado in Boulder and JILA, em-
ployed for this purpose a Bose-Einstein Condensate. Ultracold atoms trapped near surfaces are modern
devices which exploit peculiar quantum laws to do computations (atom-chip). Casimir effect is an un-
avoidable effect and its knowledge could represent an essential and useful tool in projecting, controlling
and transporting atoms near macroscopic surfaces.

Moreover, the connection between Casimir effect and BEC is not limited to these situations: For
example the critical temperature transition in BEC can be studied with a Casimir-like formalism.

The research performed

Plasmons

In the case of metallic mirrors I previously showed [6, 7] that there are two distinct contributions
to the Casimir Force: the plasmonic and the photonic ones. The former is due to the evanescent
modes associated with the collective electron excitations (plasmons) propagating on the metal/vacuum
interface [8]. The latter contribution comes from ordinary propagating cavity modes. Plasmonic modes
turn out to have a much greater importance than usually appreciated. For distances larger than about
∼10nm and typical metals, they even give rise to a contribution having simultaneously a negative sign
and a much too large magnitude with respect to the Casimir formula. This particular behavior of
the plasmonic contribution has been obtained exploiting the plasma model to describe the dielectric
properties of the mirrors. Of course the plasma model represents only the simplest approximation to
describe the optical response of a medium and it neglects some essential features of a real material.

In the first part of my research activity I generalized indeed a part of the previous calculation
to models of dielectric functions that describe more realistic properties of metals and dielectrics, like
dissipation and non-locality response to an electromagnetic field. Using a dissipative model, namely
the Drude model [9], I showed in detail that, for distances shorter then the plasma wavelength,
the Casimir force can be interepreted as a Coulomb interaction between the surface plasmons living
at the metal/vacuum interface of each mirror. The plasmon interaction gives in this limit the main
contribution and the Casimir energy is equivalent to the shift of the zero point energy corresponding to
generalized plasmonic modes that, differently from the non dissipative case, depend on the dissipation
rate. In the limit of small dissipation rates I get a correction of the non-dissipative result with a which
is linear in the dissipation rate. The introduction of dissipation leads to a reduction of the “binding”
Casimir energy, the Casimir force is then less intense. This reduction of the intensity of the Casimir
force is similar to the overdamping of a harmonic oscillator [10, 11, 12]
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The comparison with the dissipative oscillator can be, in a very clear way, pushed further taking
into account the general expression of the Casimir energy rather then its short distance approximation.
I showed that, from a very general point of view, it is possible to express the Casimir energy as a
sum of terms directly connected with each single mode of the electromagnetic field vibrating inside
the dissipative cavity formed by the two mirrors. In presence of dissipation the concept of a mode
need of course some generalization. We face indeed two distinct modifications of the non dissipative
formula: first of all the mode “frequencies” are no long real quantities but they become complex: the
modes turn into resonances. This behaviour was expected and it is a general feature of the dissipative
system. A less expected modification is due to an extra term which is directly connected with the
interaction energy between the system, the cavity, and its environment, the reservoir with which it is at
the thermal equilibrium. A clear interpretation of this term can be found examinating the interaction
of a single quantum harmonic oscillator with a quantum reservoir (which can be generally described
by an ensemble of interacting quantum harmonic oscillators) at thermal equilibrium. Even at zero
temperature there is an interaction between the system and the reservoir which has as first effect a
modification of the “bare” oscillation frequency and second, as a more intriguing effect, a non-zero
average interaction energy [12]. A definite amount of energy is needed to couple or uncouple the
oscillator from is environment [13] and the strength of this coupling is weighted by the dissipation
rate, which is basically connected with the system/bath coupling constant. All these features are
recovered in the formula I derived, which expresses the Casimir energy as a sum over the “cavity
modes”, the modes being nothing but generalized quantum oscillators. This formula represents the
first step towards an analysis of the generalized evanescent and propagating wave contributions to the
Casimir force. It is worth stressing that this opens the way to find strategies that manipulate the
plasmonic contribution through the variation of some “tunable” system parameter like temperature,
resonances in dielectric function, surface geometry and non-equilibrium situations. It also allows to
study the crossover to repulsive Casimir force. Indeed an enhancement of the plasmonic contribution
could produce a change of sign in the Casimir force, which, from a technological point of view, would
certainly be important for MEMS because it would allow to prevent sticking phenomena.

The thermal problem

The plasmonic mode analysis could also give a clearer input to the “thermal” problem on which I
worked in the second part of my stay. This is an outstanding problem in the theory of the Casimir
effect, which deal with the foundations of the theory itself [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. The
essence of the problem lies in the classical contribution to the Casimir force, which dominates at
large distances between plates or at high temperature. Calculations made for ideal metals at finite
temperature show that both polarizations of the electromagnetic field give equal contributions to
the force. At the same time the Lifshitz theory of fluctuating fields predicts zero contribution for
one polarization when the Drude model was used. Strictly speaking, the result is that the classical
contribution to the Casimir force with the Drude model is half the value of the ideal metal. At the same
time one can show that there is no continuous transition from the“real”to the ideal metal, a thing that
seems at least intriguing and that gives rise to some doubts on the validity of the previous results.
A reliable expression for the temperature dependence is important because although the classical
contribution to the Casimir force vanishes at zero temperature, it is relevant at room temperature or
at distances of a few µm where experiements are reaching a good accuracy.

A new round of discussion has started when a thermodynamical problem connected with the
Casimir free energy has been revealed. The idea was to use the Nernst heat theorem as a guiding
principle to choose between different approaches to the temperature correction [18]. According to this
theorem the entropy must go to zero in the limit of zero temperature. At the beginning it seemed that
this analysis confirmed the approach leading to a contribution of both the polarizations. However,
the following analysis revealed that the situation is not as simple and, therefore, we have a confusing
situation where each approach has its own reasoning.

The work I performed aimed from one point of view to provide a general framework for all the
previous trials to understand the problem; from the other I tried to get some insight on the physicality
of the problem.
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From the physical point of view the utilization of the Drude model is well motivated by the fact
that it seems to work well especially at low frequencies. Bordag et al. [25] used as dielectric function
the non-dissipative plasma model [9] rather of the Drude one motivated by the fact that the dissipation
rate should vanish in the zero temperature limit. They showed that in this way it was possible to
avoid this discontinuity and found a contribution from both the polarizations. It was argued then
that, at low temperatures, it is the plasma model which should be used. Therefore it seems that one
of possible explications for the particular behavior of the thermal correction of the Casimir effect relies
on the fact that the Drude model is not mathematically accurate to describe the behavior of metal
optical response.

There are several reasons that support this hypothesis. First of all the Drude model does not take
into account the non locality of the interaction between the electromagnetic field a the conduction
electrons. This means that when the radiation wavelength becomes smaller then the electron free-path
length, the real optical response of the metal remarkably differs from the one predicted. In this case
we are in fact in the region of the anomalous skin effect. Another argument claims that the description
given by the Drude model in the very small frequency domain is probably a rough approximation of
the real one. In this region a better description should be given by the surface impedance approach.
Also in this case there are several models for the surface impedence, differing for example the ones
from the others for the fact to include or not a non local description [26,21,27]. This variety of model
comes also from the difficulties of a accurate experimental measurement of the surface impedance

Now, almost all the tentatives to understand and perhaps solve the weird behavior of the thermal
Casimir energy implied a recalculation of the thermal correction using different models for the dielectric
function. In every case, however, the results are not conclusive. The encountered difficulties are always
the same and they can be roughly resumed in the following list

1. At long distances the thermal behavior is dominant but in the case of real metals the correction
is half of the one for ideal metal.

2. The value of the Casimir entropy at zero temperature is not zero, at least when dissipation does
not go to zero

3. In a well defined domain of distance the Casimir entropy is negative

The second point is in direct contrast with the Nernst theorem while for the other two we can put
forward some physical explanations.

What I did is to show from a general point of view the reasons for a violation of the Nernst theorem
and I proposed a easy way to check if a particular model can produce such a violation. Concerning
the point 2. and 3. I put into evidence that the these “difficulties” are a characteristic feature of the
Lifshitz formula for the Casimir force and are quite model-independent once we assume that the TE
polarization does not contribute to the force in the low frequency limit. This means that, within this
assumption, something in the Lifshitz formula itself remans to be understood that is independent of
the models we use to describe the optical response for a medium.

Now, again, although there are some simple physical explications and independent calculations
that seem to support the previous assumption, we have the strange discontinuity with the ideal case
that remains unclear. In particular it seems that in the high temperature limit this is due to the fact
that in the ideal case one sets the tangential component of the electromagnetic filed to zero and does
not consider the thermal fluctuations which are in general present because of the microscopic and
fluctuating structure of the medium.

Unlikely for the present time “high temperature” region is not accessible to experiment with a
sufficient accuracy and, at first sight, the low temperature experimental results seem to be in agreement
more with the ideal (contribution of both polarizations) case behavior than with the more realistic
one (just one polarization). It worth stressing however that recently some author expressed some
doubts [28, 22] on the claimed experimental accuracy of those experiment and the more realistic one
could be also compatible within the error bar.

This last point shows clearly the confusion over the thermal correction of the Casimir effect and
that there is still a lot of work to do.

The previous results will be submitted for publication.
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