Recommendation Framework for Science Foresight with an European Dimension

ESF-Workshop Paris: 17/01/2012 Dr. Andreas Trepte (Max Planck Society)

Horizon 2020 – big chances for science

2014 - 2020

€80 billion budget

- To strengthen the EU's position in science with a dedicated budget of € 24 598 million
- To strengthen industrial leadership in innovation € 17 938 million
- 3. To provide € 31 748 million to help address major concerns shared by all Europeans

Starting point

Europe has a general deficit in "science foresight" with a European dimension and an oversupply of technology foresight activities.

We see a *melange* of "voices" in the form of statements, reports, recommendations from

- national research institutions, ministries, agencies;
- scientific societies
- national academies
- European project boards
- etc.

1. Scientific Questions:

How to identify the themes with overarching scientific relevance for Europe?

(a) How to organize and (b) how to select?

A selection of possible categories:

- broad interdisciplinary or facility-based fields
- upcoming new topics or new developments at the interface between established fields
- infrastructure and facilities needs
- Governance issues (data, integrity, ethics)
- etc.

Broad interdisciplinary fields

Plant research: From molecules to organisms

Facility/infrastructure-based fields

Astronomy and Astrophysics

New developments at the interface between established fields

Geoengineering the climate

Science, governance and uncertainty September 2009 Geoengineering – global diemensions

THE ROYAL SOCIETY

Upcoming new topics

Digital Humanities

Infrastructure and facilities

Infrastructure and research facilities

Governance issues – Data usage

The FOURTH PARADIGM

DATA-INTENSIVE SCIENTIFIC DISCOVERY

EDITED BY TONY HEY, STEWART TANSLEY, AND KRISTIN TOLLE

Data-intensive science

Career pathways and perspectives

Mapping the Future: Survey of Chemistry and Physics Postdoctoral Researchers' Experiences and Career Intentions Future pathways in career development

Research integrity and ethics

Science comunication and public engagement

2. State of the art

How to develop tools

- to analyse the input and output data of science;
- identification of data sources;
- development of performance indicators and
- impact assessment,
- etc.

(use of Scopus, Web of Science and others)

3. Scientists

How to attract prestigious scientists in the respective research field to participate in science foresight exercises?

Dr. Andreas Trepte | 17/01/2012 | PAGE 15

4. Implementation

How to identify requirements and ensure that the recommendations will meet the requirements and **expectations of the research councils**?

How to ensure that the recommendations will meet acceptance within the respective scientific community?

4.1 Levels of recommendation

- Guidelines for performing science foresight at a European level.
- Budget recommendations to undertake science foresight with a real European dimension.

4.2 Levels of recommendation

- A list of elements to be covered in a science foresight
 - state of the art analyses
 - stock taking and
 - coverage of the scientific questions
- Recommended organisational processes for a successful science foresight