Evaluating and Comparing Publication Output Across Scientific Fields

ESF MOForum Dublin, November 17, 2009

Ton van Raan Center for Science and Technology Studies (CWTS) Leiden University

Universiteit Leiden

The Netherlands

Universiteit Leiden. The university to discover.

This lecture presents the state-of-the-art of an advanced bibliometric methodology, fine-tuned to the specific demands of the evaluation of academic research

Construction of Indicators

Acceptable, Valid, Robust, Reliable, Transparent Measures of Research Impact

Comprehensiveness Across the Science-Based Disciplines

Identifying High Quality Research

Distribution of impact within a department or institute: 'quality profile'

Basic Concept: How do we focus on `quality'?

Scientific performance relates to achieved quality in the contribution to the increase of our knowledge ('scientific progress')

(1) as perceived by others: peer review(2) as measured by advanced bibliometric analysis

(1) and (2) correlate (very) well at group level

No self-citations!

What do citations measure?

- Many studies show positive correlations between citations and qualitative judgments
- In principle it is valid to interpret citations in terms of intellectual influence which is an important aspect of scientific quality
- Thus, the concepts of citation impact and scientific quality do not coincide `automatically'

Qualitative versus quantitative assessment

peer review reputation may have strong influence includes 'tacit knowledge' (e.g., instrument building) includes credits: expectations, we believe that..., ahead of time... takes products other than journals papers into account fashion and hypes perhaps less influential

bibliometricreputation much less influential
only 'codified knowledge'
no credits: only past performance, evidence-based
products other than journal papers less important
fashion and hypes perhaps more influential on the short term

Number of publications with R refs 'normal' articles, total: 3,076, *Phys.Rev.Lett. 2003*

Citing and cited publications

Number of publications with C citations: P(C)

С

Network of publications (nodes)

linked by citations (edges)

Lower citation-density

e.g., applied research, social sciences

Higher citation-density

e.g., basic natural medical research

Total publ universe on-WoS publ: Books Book chapters *cwtshGoogle proc. on Reuters (Google Scholar, Google Book orts *CWTS c Search WoS cov *cwtst within 5 years lied ^{to} leading player? ar

Universition Leiden. The university to discover.

515

Example: Leiden University 2000-2005

								\wedge	
INTERNAL COVERAGE OF THE CI	I INDE	х вү м	AIN FI			7			
									Γ
									ſ
	Р	Avg Nr	Refs	%Refs	Refs				I
Main Field	00-05	Refs	<1980	<1980	Non-CI	Refs CI	%R	efs Cl	Ľ
CLINICAL MEDICINE	3,893	33.3	6,950	5%	11,637	110,945		91%	ο
BIOL SCI: HUMANS	2,421	39.0	4,449	5%	6,447	83,588		93%	o
BIOL SCI: ANIMALS & PLANTS	754	41.2	5,638	18%	6,611	18,805		74%	ο
MOLECULAR BIOLOGY & BIOCHEM	1,257	40.5	2,930	6%	3,968	44,001		92%	Ő
PHYSICS AND ASTRONOMY	1,492	36.7	4,898	9%	7,555	42,320		85%	Ó
CHEMISTRY	871	34.5	3,608	12%	3,717	22,693		86%	Ó
MATHEMATICS	233	21.5	957	19%	1,680	2,375		59%	Ó
GEOSCIENCES	134	40.4	578	11%	2,169	2,673		55%	Ó
APPLIED PHYSICS AND CHEMISTRY	514	24.7	1,382	11%	2,081	9,256		82%	ò
ENGINEERING	373	21.5	686	9%	3,151	4,185		57%	ò
MULTIDISCIPLINARY	126	30.5	215	6%	339	3,291		91%	ò
ECONOMICS	35	38.9	160	12%	593	608		51%	, O
PSYCHOLOGY, PSYCHIATRY & BEHAV SC	633	40.3	2,789	11%	7,296	15,406		68%	ò
SOCIAL SCIENCES RELATED TO MEDICINE	292	28.9	597	7%	2,153	5,698		73%	d
OTHER SOCIAL SCIENCES	291	34.9	1,469	14%	5,649	3,047		35%	4
HUMANITIES & ARTS	220	38.7	2,477	29%	5,063	973		16%	Ł
									L

CWTS applies three types of field definitions:

Journa

Field = set of journals 'established fields' scientific medium-grained structure

+ reference-based re-definition (expansion) of fields

Main field: Medical & Life Sciences

	Citing publications		
Field-s	specific normaliz	ation	
C(A)/F	P(A) = CPP/FCS	Sm	
C(f)/P	(f)		
+ doc. t + no se	type normalization If-citations, also not	: in C(f)!	
	Cited publications		

Universiteit Leiden. The university to discover.

Basic Performance Indicators

- **P** Ouput: Number of publications in internationally refereed CI-covered journals
- C Absolute Impact: Number of (self-ex) citations to these publications
- *H* Hirsch-index
- CPP Output-normalized Impact: Average number of cits/pub of the institute
- **JCSm** Average number of cits/pub of the journal set used by the institute
- **FCSm** Average number of cits/pub of all journals of a specific field in which the institute is active (FCSm)
- **p0** Percentage of not-cited publications

CWTS Key Research Performance Indicators:

- JCSm/FCSm Relative impact of the used journal set
- **CPP/JCSm** Internat. journal-normalized impact
- CPP/FCSm Internat. field & doc-normalized impact

- *Pt/Πt* Contribution to the top-5, 10, 20,..%
- **P*CPP/FCSm** Size & Impact Together: Brute Force

Application of Thomson-ISI Impact Factors for research performance evaluation is **irresponsible**

- * Much too short 'Citation window'
- * No Field-specific Normalization
- * No distinction between document types
- * Calculation errors/inconsistencies nominator/denominator

* Underlying citation distribution is very skew: *IF-value heavily determined by a few very highly cited papers*

Ranking of the 250 largest European universities by FCSm

Field normalization

- CPP >> CPP/FCSm is absolutely necessary but
- CPP: is as it is....
- FCSm: do we apply the right field-specific normalization?
- Problems: size of the field, appropriateness of the WoS-category, role of underlying distribution function (>small non-linearity)?

..and on the basis of the 30,000,000 grammatically parsed publication abstracts (1980-2008):

> 2. Field = clusters of concept-related publications new, emerging often interdisc. Fields scientific fine-grained structure

> > Universiteit Leiden. The university to discover.

' Models

power law (w1), scale free networks (w2), w1 w2 w3...wm w3), universal scaling (w4),....

. the existing nodes in the mug minks to a node follows a universal scaling the distribution . wmpn controlled not only by the system size ys as a w3 w2 w1 ork "accessible" to the node. We test our hot previ w1 data for w2 sRevLet w3 , 84.35.+i, 89.75.Da, 89.75.Hc w4 hanisms of global networks [1–3], such as the World Wide in unde Netwo such as Internet attacks [2], spread of an Email virus [7], or nber of links play an important role on the dynamics of the ll these ts precise distribution of the number of links. w the glo oth the properties; that is, the number of incoming links and the ode hav WM w tails [4–6]. It has been proposed [9] that the scale-free may be explained by a mechanism referred to as "preferential attachment" [10] in which new nodes link to ortional to the number of existing links to these nodes. Here we focus on the stochastic character of the ich we understand in the following way: New nodes want to connect to the existing nodes with the largest legree—because of the advantages offered by being linked to a well-connected node. For a large network it now the degrees of all existing nodes, so a new node must make a decision on which node to connect with t the state of the network. The preferential attachment mechanism then comes into play as nodes with a

larger degree are more likely to become known.

p1

p2

p3

p4

Th

W

dy

sy

Re

nu

str

ext

pre

nu is

baipn

linear ma

fuzzy (

Now specific sub-field CPP/FCSm values can be calculated, e.g., the normalized citation impact for research on genetic algorithms

instead of normalization based on much larger fields such as Computer Science

But, obviously, the finer grained, the more 'noisy'

3.Field = set of publications with thematic/field-specific classification codes e.g., from PubMed again for new, emerging often interdisc. fields *scientific fine-grained structure*

Universiteit Leiden. The university to discover.

Problem of the 'right' FCSm.....

Physics 1997-2006					
			CPP/	CPP/	JCSm/
	Р	СРР	FCSm(RCUK)	CSm(WoS)	FCSm(WoS)
Canada	42,791	7.97	1.29	1.42	1.37
France	107,183	6.6	1.08	1.23	1.18
Germany	157,615	7.77	1.26	1.37	1.26
Japan	173,344	5.40	0.87	1.04	1.12
Netherlands	29,743	9.32	1.51	1.63	1.39
UK	103,885	8.09	1.31	1.39	1.25
USA	381,338	10.09	1.63	1.73	1.48

Physics papers in Nature & Science 1997-2006										
				CPP/			CPP/		JCSm/	
	Р	СРР	FC	Sm(RCU	K)	FC	Sm(WoS)	FCSm(WoS)	
Canada	66	55.20		8.94			1.56		3.09	
France	199	57.04		9.23			2.07		3.09	
Germany	281	64.57		10.45			2.25		3.11	
Japan	231	82.21		13.31			2.77		3.12	
Netherlands	136	101.85		16.49			3.29		3.19	
UK	233	76.63		12.41		Ι	2.59	Π	3.22	
USA	1,710	79.60		12.89			2.55		3.14	

PHYSICS

BIOCH & MOL BIOL

* SOCIOLOGY

* LANGUAGE&LING

Bibliometric standard indicators									
trend-analysis, institute as a whole, 1999-2008 🦳 👝 🦳									\frown
					PP/	JCSm	Self-		
	Р	С	СРР	Pnc	Δ	JCSm	FCSm	FCSm	Cit
					\prod				
1999 - 2008	1,643	23,990	14.6	14%	D	1.08	1.34	1.24	20%
1999 - 2002	625	2,882	4.61	34°	ó	1.16	1.38	1.19	26%
2000 - 2003	610	2,971	4.87	349	ó	1.13	1.40	1.24	25%
2001 - 2004	615	3,038	4.94	35°	ó	1.14	1.33	1.17	26%
2002 - 2005	632	3,010	4.76	339	ó	1.09	1.27	1.15	27%
2003 - 2006	646	3,220	4.98	30%	þ	1.01	1.27	1.25	27%
2004 - 2007	677	3,397	5.02	31%	b	1.04	1.29	1.24	27%
2005 - 2008	718	4,134	5.76	27%	6	1.05	1.40	1.33	26%

International impact of VUMC publications 1997-2006

Output and impact per field 2000 - 2003

Leiden University

FIELD (CPP/FCSm)

Share of the output (%)

RESEARCH AND IMPACT PROFILE COMPARISON 2000 - 2005

0,91 1,35 **ASTRON & ASTROPH** 1,03 **BIOCH & MOL BIOL** 1,18 1,24 1,64 MATER SC, MULTID CHEM, PHYSICAL 0,88 1,02 1,41 3,36 MEDICINE, GENERAL DENT, ORAL SURG 0,72 2,06 1,81 1,97 PHYSICS, MULTIDIS 0,88 1,49 ENG, ELEC&ELEC 1,26 0,90 NEUROSCIENCES CHEMISTRY, MULTI 1,34 1,43 **PSYCHIATRY** 1,43 1,03 1,23 1,30 COMPU SCI, THEORY 1,00 0,95 ENDOCRIN & METAB 1,32 1,92 RHEUMATOLOGY 0,97 1,18 ONCOLOGY CELL BIOLOGY 1,21 1,10 0,89 1,18 PHYSICS, COND MA 1,10 4,52 ENG, CHEMICAL **PHARMACOL & PHAR** 1,39 1,06 CHEM, ORGANIC 1,01 1,14 1,15 0,88 PHYSICS, PART&FI 0,73 0,78 PHYSICS, APPLIED 1.13 **GENETICS & HERED** 1.37

Large UK University vs. Leiden University

Universiteit Leiden. The university to discover.

Diseases of the Neurosystem Dept Output in Fields Dept Impact from Fields

Thematic Performance Wageningen University Sustainability-Food

Conclusion

Advanced bibliometric analysis is a powerful tool to make research assessment more objective, transparent and effective, particularly in the natural science and medical fields, and in several of the engineering and social science fields -but never use it as a stand-alone tool;

It is also an effective instrument for measuring interdisciplinarity, knowledge flows and knowledge diffusion, participation in solving societal/technological/economic problems

A scientist has index *h* if *h* of his/her *N* papers have at least *h* citations each and the other (*N*-*h*) papers have no more than *h* citations each

Universiteit Leiden. The university to discover.

Search Results -- Summary

.U=(vanraan A*)

Ŧ Refine your results

ocType=All document types; Language=All languages; Databases=SCI-EXPANDED, SSCI, A&HCI; Timespan=1945-2006

Search within results:

En

62 results found (Set #2)

Records 1 -- 10 Show 10 per page 💌

Go to Page: 1 of 7 GO

Jse the checkboxes to select records for output. See the sidebar for options.

Subject Categories | Source Titles | Document Types | Authors | Publication Years

I. MOED HF, BURGER WJM, FRANKFORT JG, et al. <u>THE USE OF BIBLIOMETRIC DATA FOR THE MEASUREMENT OF UNIVERSITY-RESEARCH PERFORMANCE</u> RESEARCH POLICY 14 (3): 131-149 1985 Times Cited: <u>111</u> § S·FX

VANRAAN AFJ, DEJONGH JP, VANECK J, et al. <u>ABSOLUTE CROSS SECTIONS FOR EXCITATION OF HELIUM BY ELECTRONS (20-2000EV) AND POLARIZATION OF EMITTED RADIATION</u> PHYSICA 53 (1): 45& 1971 Times Cited: <u>56</u>

S S·F·X

📋 3. 🛛 vanRaan AFJ

Advanced bibliometric methods as quantitative core of peer review based evaluation and foresight exercises SCIENTOMETRICS 36 (3): 397-420 JUL-AUG 1996 Times Cited: <u>54</u>

S S·F·X

BRAAM RR, MOED HF, VANRAAN AFJ
MAPPING OF SCIENCE BY COMBINED COCITATION AND WORD ANALYSIS .1. STRUCTURAL ASPECTS
JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE 42 (4): 233-251 MAY 1991
Times Cited: 54

Ø S·F·X

5. MOED HF, BURGER WJM, FRANKFORT JG, et al. <u>THE APPLICATION OF BIBLIOMETRIC INDICATORS - IMPORTANT FIELD-DEPENDENT AND TIME-DEPENDENT FACTORS TO BE CONSIDERED</u> SCIENTOMETRICS 8 (3-4): 177-203 1985

12, FLILRUTTEL, URAAM RR, TAMARAMAALU COGNITIVE RESEMBLANCE AND CITATION RELATIONS IN CHEMICAL-ENGINEERING PUBLICATIONS JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE 46 (1): 9-21 JAN 1995 Times Cited: 24 6 S·F·X 13. VanRaan AFJ Scientometrics: State-of-the-art SCIENTOMETRICS 38 (1): 205-218 JAN 1997 Times Cited: 23 6 S·F·X 14. NOYONS ECM, VANRAAN AFJ, GRUPP H, et al. EXPLORING THE SCIENCE AND TECHNOLOGY INTERFACE - INVENTOR AUTHOR RELATIONS IN LASER MEDICINE RESEARCH RESEARCH POLICY 23 (4): 443-457 JUL 1994 Times Cited: 20 6 S·F·X 15. TIJSSEN RJW, VANRAAN AFJ MAPPING CHANGES IN SCIENCE AND TECHNOLOGY - BIBLIOMETRIC COOCCURRENCE ANALYSIS OF THE R-AND-D LITERATURE EVALUATION REVIEW 18 (1): 98-115 FEB 1994 Times Cited: 20 **S**·F·X Hirsch (h-) index AFJ van Raan = 16. NEDERHOF AJ, VANRAAN AFJ A BIBLIOMETRIC ANALYSIS OF RESEARCH POLICY 22 (4): 353-Times Cited: 19 6 S·F·X 18 17. NEDERHOF AJ, MEIJER RF, MOEI RESEARCH PERFORMANCE INDIC SCIENTOMETRICS 27 (2): 157-178 JUN rimes Cited: 18 **S**·F·X 18. PETERS HPF, VANRAAN AFJ F CHEMICAL-ENGINEERING .2. REPRESENTATIONS BY COMBINED CLUSTERING AND MULTIDIMENSIONAL CO-WORD-BASED SCIENCE MAPS (SCALING RESEARCH POLICY 22 (1): 47-71 FEB 1993 Times Cited: 18 6 S.F.X 19. MOED HF, BURGER WJM, FRANKFORT JG, et al. A COMPARATIVE-STUDY OF BIBLIOMETRIC PAST PERFORMANCE ANALYSIS AND PEER JUDGMENT SCIENTOMETRICS 8 (3-4): 149-159 1985

Times Cited: 17

A has 6 publ: 5 are cited 5 times, 1 is not cited H=5

- B has 6 publ: 4 are cited 4 times, 2 are cited 5 H=4
- r(B) < r(A)

This is unnatural and very difficult to justify. We call this an inconsistent indicator. Group **A**, 5 res, each res 5 publ, each publ 5 cit >> each res H=5, there are 25 publ with 5 cit (C=125)

Group **B**, 5 res, each res 2 publ with 10 cit and 3 publ uncited >> each res H=2, there are 10 publ with 10 cit (C=100)

Each res in group A outperforms each res in group B

Thus, clearly group **A** outperforms group **B**.

According to Hirsch this is NOT the case: Group A: H=5, Group B: H=10

Universiteit Leiden. The university to discover.

The H-index calculated at the level of research groups completely contradicts the same measure at the level of the individual researchers in the same groups

This is a rather odd result

Again: the H-index is inconsistent

Correlation of h-index (h) with number of citations (C) for all chemistry groups in the Netherlands

Correlation of h-index (h) with number of publications (P) for all chemistry groups in the Netherlands

Ρ

Correlation of h-index (h) with CPP/FCSm for all chemistry groups in the Netherlands

Thank you for your attention

