Space Radiation and Propulsion

C. Bruno, University of Rome HESAC Meeting, November 26 2010 TechBreak Meeting, November 29-30 2010

Part 2 of talk by Durante and Bruno, HESAC #1, September 2010...

Radiation doses in different missions

...from M. Durante's presentation at HESAC #1, September 2010... Note bio damage scales as (dose)² (Bethe-Block, or Coulomb)

SHIELDING

- In space particle flux decreases with shield matter crossed
- Particles are charged and interact with shield electrons
- → exponential attenuation with d_a = mass density/unit area [g/cm²]

SHIELDING - GCR AND SOLAR

Most bio damage done by heavy ions (high Z), not photons

Shielding \rightarrow shield thickness = d_a/density

e.g.; on ISS (Al) \rightarrow d_a = 5 g/sq.cm, but due to equipment, d_a = 5 to 40

Remember: bio damage ~ (dose)²

MISSIONS – Must reduce dose

- A key concept:
- Since dose = (flux) x time,
- and since cannot in practice reduce flux,
- try to reduce time of exposure = mission time!
- Conventional missions: → Hohman = boost + coast
- Faster missions: no longer Hohman

MISSIONS – To reduce time: use accelerated orbits

Accelerated travel makes tremendous difference in time to destination

But: mass consumption forbiddingly high with conventional propulsion

e.g.: mission to Neptune, Isp = 459 s:

Acceleration [g]	1/100	1/10,000	Boost-coast
Distance [mi]	4.05E+09	4.05E+09	4.05E+09
1/2 dist [mi]	2.02E+09	2.02E+09	2.02E+09
Time [yr]	0.258	2.582	11.284
Time [days]	94.31	943.14	4,121
V _{1/2} [km/s]	799.13	79.91	18.29
V _{1/2} /c [% of c]	0.43%	0.043%	0.010%
WR _{1/2}	7.52E+77	1.25E+07	10.28

MISSIONS - Transit time as a function of Isp

At $a = 10^{-2}$ g, trip is fast, but: mass ratio is significant.

What compromises between mass ratio and time?

Nuclear propulsion looks feasible if Isp can be raised:

lsp (sec)	459	1,100	4,590
WR	10.70	7.23	3.38
Jupiter	2.69	1.70	0.793
Saturn	4.92	3.12	1.45
Uranus	8.14	5.16	2.40
Neptune	11.15	7.07	3.29
Pluto	13.75	8.72	4.06
Kuiper Belt	16.29	10.34	4.81
Heliopause	27.86	17.67	8.22

Increasing Isp Reduces Transit Time [years] and Weight Ratio

At fixed mass, higher Isp enables bigger $\Delta(V)$ and faster travel!

MISSIONS – Hohman ΔV

- Key concepts:
- Newton's 3rd Law: eject mass m at v = Ve to create thrust T
- Newton's 2nd Law: increase T to shorten trips
- To increase T : better to increase Ve, not m!
- For no losses: Ve coincides with engineers' Isp = T/(dm/dt)

Thus:

- dm/dt = flowrate ~ Ve
- Thrust T ~ (dm/dt) Ve ~ $(Ve)^2$
- Power ~ T Ve ~ $(Ve)^3$
- To reduce transit time: raise T → need to raise Ve!
- But: Power will grow faster...

How to increase Ve... or T, $\sim (Ve)^2 \sim Kinetic Energy, KE$

- To produce KE, must have Potential Energy PE: PE + KE = Constant
- Not all PE may become KE \rightarrow only a fraction $\alpha < 1$: α depends on fundamental force (gravitation, electroweak, nuclear)

$\alpha PE = KE$

- 1-D, classical: $\alpha PE = \frac{1}{2} m Ve^2$
- therefore $Ve = (2 \alpha PE/m)^{1/2}$ PE/m = J, energy density
- ▶ thus: to increase Ve \rightarrow increase J

► to increase Ve substantially → raise J "more substantially "!

In summary:

- Ve rules dm/dt, thus <u>mass to orbit and cost</u>
- (Ve)² rules Thrust T, thus <u>mission time</u>
- (Ve)³ rules Power P, thus <u>size of engine</u>
- With chemistry, P depends on the 2nd force, ~ dm(propellants)/dt
- With nuclear energy P depends on 3rd force, ~ dm(nuclear fuel)/dt

 Ve rules everything and must be raised as much as feasible

Propulsion - Einstein's Equation

Potential Energy \equiv PE = (mass) c² Kinetic Energy \equiv KE = Δ (PE) = α PE = Δ (mc²) = $\alpha \Delta$ (mc²)

 $\succ \alpha$ depends on the type of fundamental force!

Propulsion: Forces, Potential Energy and \alpha

Compare α and J from fundamental physics:

Type of force	Potential	alpha	Energy density, J (J/kg)
Gravity	gravitational	10-27	10-11(*)
Electro-weak	chemical (H2/O2 combustion)	1.5 x 10 ⁻¹⁰	1.35 x 10 ⁷
Strong Force	Nuclear: Fission (²³⁵ U)	9.1 x 10 ⁻⁴	8.2 x 10 ¹³
	Fusion (D-T)	3.75 x 10 ⁻³	$3.4 \ge 10^{14}$
	Metastable (^{180m} Ta)	2 x 10 ⁻⁷	$1.8 \ge 10^{10}$
	Annihilation (p+-p-)	1.0	9 x 10 ¹⁶

* Between two 1kg-masses at 1 m distance

- \blacktriangleright No known α between 3.75 x 10⁻³ and 1
- Even $\alpha = 1$ produces not directly useable energy (e.g., γ rays)

16

MISSIONS - Energy Density J with Chemical Propellants

Are there any high-energy propellants alternatives to LOX/LH2?

The Holy Grail is...

...metallic Hydrogen \rightarrow theoretical J ten times higher than LOx/H₂... existence, stability, control \rightarrow unsolved issues...

...and Ve (Isp) goes up only by $(2J)^{1/2} \rightarrow Isp \sim 1700s$

→ Must increase J by <u>orders</u> of magnitude → Nuclear energy

Propulsion: nuclear energy

- The highest α : \square nuclear force:
- J of order of 10¹³ [j/kg]

• J of LOx/LH₂ : 10⁷ [j/kg] !

Nothing can beat the J (and Ve) of nuclear energy

Nuclear Propulsion: Ve from Special Relativity

Calculate Isp:

- Assume ideal expansion (to pe=0): Isp = $V_e \equiv V$ (for short)
- Obtaining Ve is a 3-stage process:
- Pot. Energy \longrightarrow Microenergy of matter \longrightarrow Thermalization \longrightarrow Orderly bulk motion (e.g., Vibr., Transl., Ionization, n, e⁻, α^+) (equilibrium) at V = Ve
 - V from relativistic energy balance: $m_o c^2 = (1 \alpha)m_o c^2 + \frac{1}{2}\frac{m_o(1 \alpha)V^2}{\sqrt{1 \frac{V^2}{2}}} + \frac{1}{2}\frac{Mp_o V^2}{\sqrt{1 \frac{V^2}{2}}}$

Possible addition of inert mass, Mp

Plot normalized specific impulse, Isp/c = V/c = Ve/c:

NOTE:

- $m_0 = fission fuel mass at rest$
- M = added inert propellant, e.g., H2

Nuclear Propulsion - Isp as a function of α and added inert

Isp/c is a function of α **: limit Isp = speed of light !**

Nuclear Propulsion - Thrust F

Satisfies both $F \cdot Isp = P$, thrust power = $\eta_{tot} \times P_{reactor}$

> \checkmark $F=Isp \cdot \dot{m}$ (m = total mass rate ejected)

$$\blacktriangleright$$
 F = (P · \dot{m})^{1/2} grows slowly with P_R,

~ reactor cost

Thus, in terms of inert mass addition, or μ

$$\mathbf{F} = \sqrt{\alpha} \cdot \dot{m}_0 \cdot \mathbf{c} \cdot \sqrt{\eta_{\text{tot}}} \cdot \left[\mathbf{z} \cdot (1 - \alpha) / \sqrt{1 - (\mathbf{V}/\mathbf{c})^2} + \mu / \sqrt{1 - (\mathbf{V}/\mathbf{c})^2} \right]^{1/2}$$

Where z: = 1 : unreacted fuel also ejected = 0: unreacted fuel stays inside reactor

generally F $\Box \sqrt{\mu}$; if only fission/fusion fragments are ejected, $\mu = 0$

Thrust may be written $F = \sqrt{\alpha} \cdot \dot{m}_{0} \cdot c \cdot \sqrt{\eta_{tot}} \cdot \Phi\left(z, \alpha, \mu, \frac{V}{c}\right)$ Limit thrust

Amplification factor

Note Trade off between F and Isp

- \blacktriangleright P scales as $F \cdot Isp = F \cdot V = V^3$ [ideally, Ve = Isp]
- ➢ P scales with Isp³: 'high' thrust ('fast') missions need 'much larger' P, → nuclear power

Nuclear Propulsion - How to exploit Nuclear Power

Most of what said applies to thermal exploitation. But power may be used differently...

NTR (Nuclear Thermal Rockets): expand hot fluid, as in chemical rockets. E.g., with H₂ and max $T = 3000K \rightarrow Isp \sim 1000$ s, thermal efficiency ≈ 1 (all heat absorbed by H₂).

Bulk power density ~ 10^{-3} to 10^{-1} kg/kW. NTR may be very compact, e.g., with ²⁴²Am fuel, 40 MW from a 300-kg reactor are feasible.

NER/NEP (Nuclear Electric Rocket/Propulsion): run hot fluid in a cycle to generate electric power and feed it to an electric thruster (ET), f.i., ion, arcjet, MPD,...

> Isp is that of ET: may be ~ $10^5 - 10^6$ s and higher. Thermal efficiency: 30-50%; ET efficiency: 70-80%; needs space radiator(s).

Bulk power density: low, ~ 1/100 of that of NTR

Figure 7-6: Conceptual scheme of a Nuclear Thermal Rocket (Bond, 2002)

Nuclear Propulsion - Application Strategies Schematics of NER – Nuclear Electric Rocket Radiator Power Shield Conversion Reactor Propellant Thruster

Figure 7-7: Conceptual scheme of a Nuclear-Electric Rocket. Note the mandatory radiator (Bond, 2002)

Nuclear Propulsion - NTR Applications

NTR – US Developments (1954-1972)

[M.Turner, "Rocket and Spacecraft Propulsion", 2005]

Nuclear Propulsion - NTR Applications

NTR – US Developments (1954-1972)

The Phoebus IIA solid-core nuclear reactor on its Los Alamos test stand (Dewar, 2004). Reactor was tested at 4.2 GW for 12 min.

Nuclear Propulsion - Application Strategies

Nuclear propulsion strategies:

Nuclear Electric Propulsion

Two main NEP classes: charged species accelerated by:

□ Coulomb Force (only electric field imposed)

□ Lorentz' forces (electric and magnetic field)

Nuclear Propulsion - Comparisons

□ Must set ground rules (otherwise, 'apples & pears')

 \Box Here: based on $I_{tot,s} = (I_{sp} t_{operation})/(M_P + m) \sim Isp^3 \eta_{tot}/P_{Reactor}$

Itot,s is a distance traveled/unit 'fuel' mass, as in cars

 \Box Normalize $I_{tot,s}$ using $I_{tot,s}$ of LOX/LH₂ : this ratio is the 'performance Index, I':

Type of propulsion	Isp (s)	η _{tot} (assumed)	I
Chemical	455	1.	1.
NTR	910	1.	8
Ion NEP	3,000	0.3	65
MHD NEP	10,000	0.3	2,400

NEP: Apply to Manned Mars Mission (M3): Travel Time vs. Power (Bruno et al, 1AC 2009)

Flight Time vs Thruster Power

(M3) - Dose vs. Time and Shield [Durante & Bruno 2010]

(M3) - Dose vs. Time and Shield

NEP: Apply to Manned Mars Mission (M3): Delta V versus Power

(MASS: 120 to160 ton)

<u>Compared with CP total AV is 406.76% to 574.9% higher!</u> <u>PROPELLANTS CONSUMPTION?</u>

NEP: Apply to Manned Mars Mission (M3): Consumables versus Power

Fuel and Mass Consumption

M3 with NEP - Conclusions

The combination of Isp and power of Gridded Ion Systems for a M3 predicts times and masses significantly better than with CP and, very likely, NTP

The dose to crew may be drastically reduced with NP

NEP: Apply to Interstellar Precursor Mission

- Unmanned probe, powered by NEP, may reach heliopause, Sedna (an OCO) perihelion (73 AU) and other interesting orbits in reasonable times and P/L ratios
- Time, P/L depend on alpha=NEP Power/NEP mass

73 AU Distance

Power as function of Isp; 8-year mission. Initial mass M_0 as parameter. Needs an order of magnitude more power than a 20-year mission

73 AU Distance

Power as function of Isp; 20-year mission and initial mass M_0 as parameter

NP – MAJOR ISSUES

- Reactor Lifetime, Integrity
- Reactor In-Flight Refueling
- NEP: Electric Thruster Lifetime
- NTR: materials, fuel
- Public (and specialists...) acceptance
- ...

Missions with NP - Some Conclusions

- No other propulsion system has the performance potential of NP.
- **NP** can drastically reduce a M3 transit time and crew radiation dose.
- Correlating dose and health risks (cancer,..) indispensable: risk estimates for a M3 vary too much (e.g., 1% to 30%).
 → R&D in this area needed!
- NTP probably suited to intercept asteroids
- Investing in NP is key to affordable, safe Human Exploration

Czysz and Bruno

HE (SKI)

Paul A. Czysz

Claudio Bruno

D Springer

FUTURE **SPACECRAFT** PROPULSION SYSTEMS

Enabling **Technologies** for Space Exploration

For excruciating details: see the book by

Prof. Claudio Bruno University of Rome and Prof. Paul Czysz St. Louis University