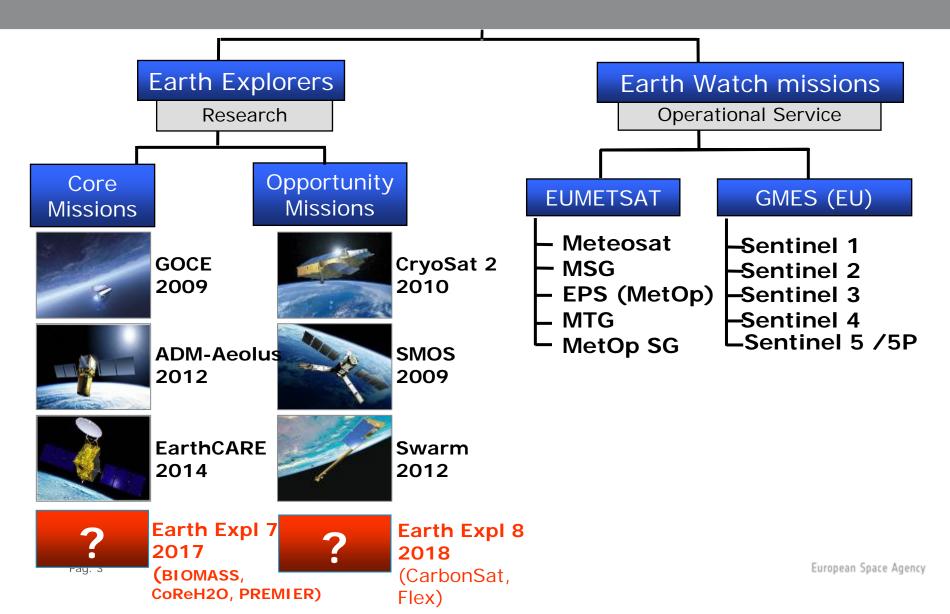


Scientific challenges and technological limitations in ESA's Earth Observation Programme

J. Callies Future Missions Division Earth Observation Programmes Directorate



• Very brief introduction to ESA's Living Planet Programme

• Earth Observation Technology Challenges

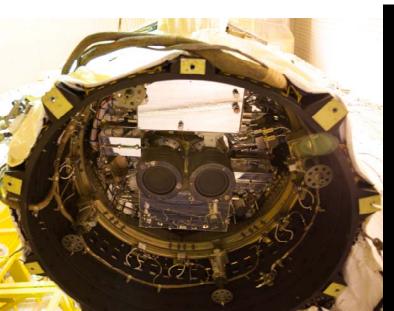
ESA's LIVING PLANET PROGRAMME

ESA'S GRAVITY MISSION

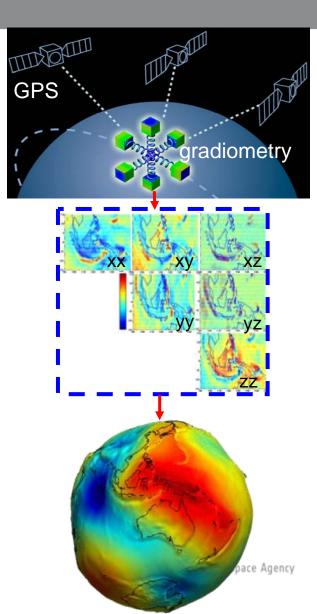
GOCE (GRAVITY FIELD AND STEADY STATE OCEAN CIRCULATION EXPLORER)

- global ocean circulation and transfer of heat
- physics of the Earth's interior (lithosphere & mantle)
- sea level records, topographic processes,
 evolution of ice sheets and sea level change

PRIME EXAMPLE OF EARTH SCIENCE ADVANCEMENT THROUGH NEW TECHNOLOGIES, AS IN GENERAL FOR ALL EARTH EXPLORERS Pag. 4




THE FIRST EARTH EXPLORER MISSION



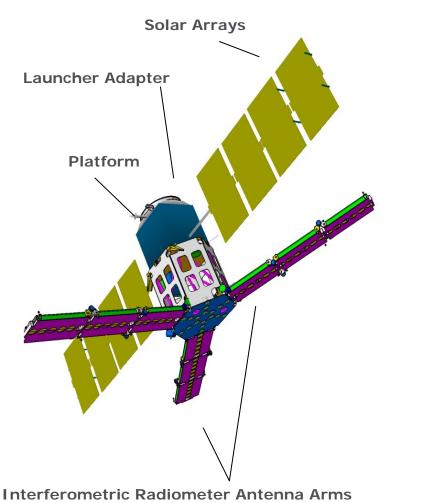
WHAT MAKES THE GOCE SATELLITE SO UNIQUE?

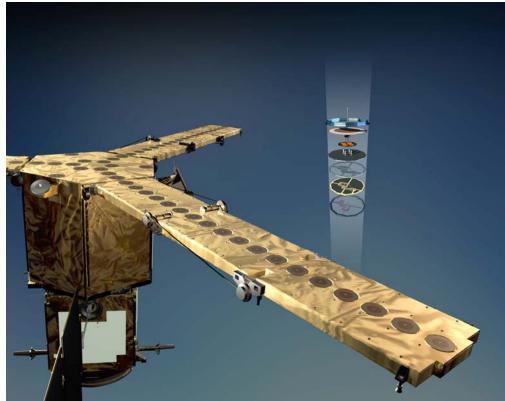
- First gravity gradiometer in space
- Accelerometers with sensitivity at pico-g level
- Extremely low orbit (255 km), controlled to a few metres and determined to ~ 1 cm
- First active air drag compensation by electric propulsion
- Perfectly quiet on-board environment

European Space Agency

ESA'S WATER MISSION

SMOS (SOIL MOISTURE AND OCEAN SALINITY MISSION)


- Provide global maps of soil moisture and ocean salinity for hydrological studies
- Advance understanding of the water cycle
- improve climate, weather and extreme-event forecasting



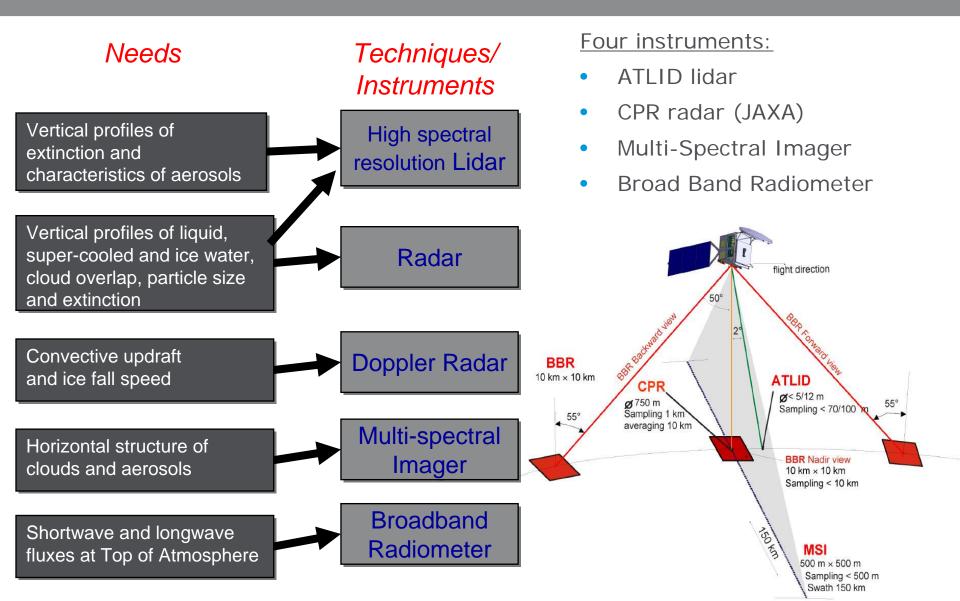
SMOS: RADIOMETRY WITH APERTURE SYNTHESIS

microwave radiometer at L band: 1.4 GHz 2D interferometry (from 72 receivers) multi-incident angles (0°- 55°) polarimetric observations

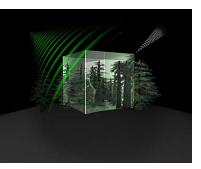
Pag. 7

ESA'S CLOUD & AEROSOL MISSION

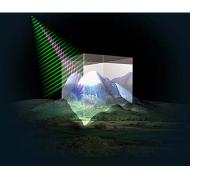
EarthCARE

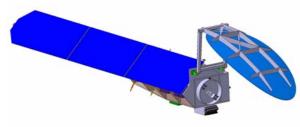

a joint ESA – JAXA (Japan) mission:

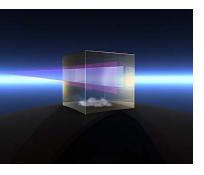
- to quantify and thus improve understanding of cloud-aerosolradiation interactions
- to include such parameters correctly and reliably in climate and weather prediction models


ESA'S CLOUD & AEROSOL MISSION

EARTH EXPLORER 7: PHASE A STUDIES




A satellite carrying a P-band SAR to provide continuous global interferometric and polarimetric radar observations of forested areas



CoReH2O


A satellite with dual frequency (X, Ku), dualpolarisation SAR to observe snow / ice at high spatial resolution

PREMIER

A satellite carrying an infrared limb-imaging spectrometer and a mm-wave limb-sounder to measure 3D fields of atmospheric composition in upper troposphere and lower stratosphere

EO technology challenges

- Microwave technologies:
 - Large antennas (passive/active)
 - Power sources (tubes, solid-state)
 - Receivers (mm- and sub-mm wave)
 - On-board electronics (SAR)
- Optical technologies:
 - High-performance spectrometers
 - Laser sources for lidars
 - Detectors

detectors

- Generally large signal, high-speed operation
- Large format required (1D or 2D)
- Cooling capabilities limited
 - Passive: 100 K
 - Active: 50 K

What about a detector without or drastically reduced dark signal to avoid cooling needs?

Laser development

Background: Lasers in Space applications

Telemetry Ranging metrology Earth-satellite metrology between satellites (LISA) formation flying (PROBA3) Altimetry for Earth geodesy, canopy height for planetary mission's (BepiColombo) Telecommunication Laser link (ARTEMIS) Earth Observation Wind (ADM-Aeolus) Aerosols, Clouds (EarthCARE) Trace gases concentration (WALES, A-SCOPE, ACCURATE, MERLIN) Gravity waves (Mesospheric lidars)

Water Vapour Lidar Experiment in Space: WALES

Scientific objective:

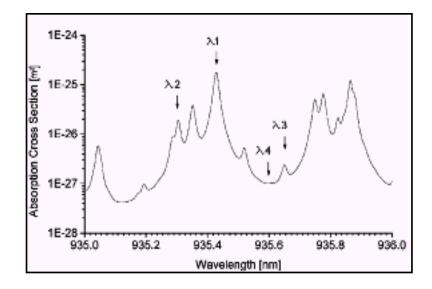
The observation of vertical water vapour profiles to better understand and model the water vapour physical and chemical processes.

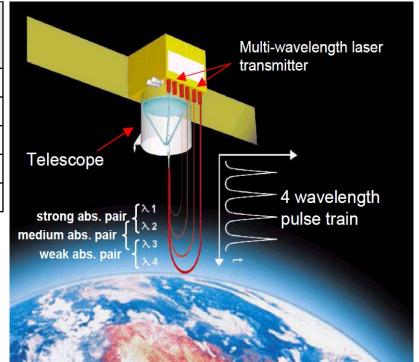
MISSION PARAMETERS Orbit:

- Sun-synchronous
- Altitude ~ 450 km
- Local time ~06:30 ascending node

Mass: 1500 kg Power: 3 kW Mission life: 3 years

MET9 WV062 2010-06-20 21:00 UTC

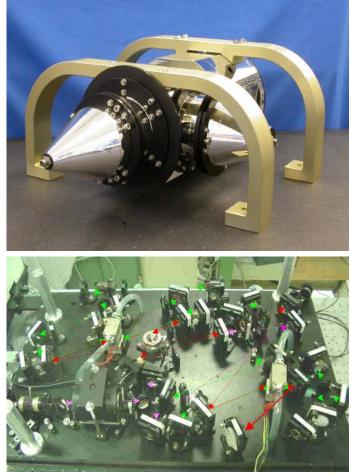

Differential Absorption Lidar


PAYLOAD

Water Vapour Lidar Experiment in Space: WALES

Observation requirements:

	PBL	Low Tropo- sphere	High Tropo- sphere	Low Strato- sphere
Vertical domain [km]	0-2	0-5	5-10	10-16
Vertical resolution	1 km			2 km
Horizontal resolution	25 km	100 km	150 km	200 km
Random error	< 20 %			
Bias	< 5 %			



esa

Water Vapour Lidar Experiment in Space: WALES

Instrument requirements.

Parameters	Value		
Transmitter			
Wavelength	4 around 935 nm		
Pulse energy	75 mJ		
Repetition rate	25 Hz (4 pulses in 40 ms)		
Frequency accuracy	< 60 MHz		
Linewidth	< 160 MHz		
Spectral purity	> 99.9 %		
Receive Telescope			
Telescope diameter	1.75@2m		
FOV	115 urad		
Receiver			
Background rejection			
Bandwidth	2 nm		
Peak transmission	80 %		
Tunable Filter			
Peak transmission	50%		
Bandwidth	40 pm		
Finesse	>150		
Detector			
QE	0.6		

Ti-Sa laser breadboard

esa

Technology limitations

- Limited R&D sources,
- no "mass market",
- little push from other customers
- European source !