

Universiteit Leiden Physics of Life Processes

Physical techniques to uncover the physics of chromatin; Single molecule studies

John van Noort

Frank and Ernest

Copyright (c) by Thaves. Distributed from www.thecomics.com.

Condensation vs. transcription...

Objective: To obtain *microscopic* data on the *physical properties* of chromatin and to challenge structural and *dynamic* models of chromatin

How about:
histone modifications?
ATP-dependent remodellers ?
non-uniform linker length?
linker histones?
DNA sequence dependent positioning
...

Compilation of illustrations by David S. Goodsell, The Scripps Research Institute pdb molecule of the month

Experimental challenges of studying chromatin structure:

- □ Highly heterogeneous
- □ Highly dynamic
- ☐ nm sub-micrometer range
- Many species of proteins involved

Sample preparation for DNA imaging

Adsorption to an atomically flat solid support

- K+ dissociates from the mica surface
- Mg 2+ acts as a bridge between the two negatively charged surfaces

- 1000 bp dsDNA
- EcoRI cut: AATT sticky ends

AFM in buffer

Van Noort et al. Biophys J. 1998

Magnetic tweezers

By moving the magnets both the force and the twist of a single DNA molecule can be controlled:

Force = $M \bullet \nabla H$

Torque = $M \otimes H$

Optical Tweezers

□ A strongly focused laser traps highrefractive index micron-sized beads

□ The bead/DNA can be manipulated with nm accuracy by moving the focus or the slide

Bead Detection

- □ Create a look up table by scanning in the zdirection and calculating a radial profile
- Calculate the z position by comparing the current radial profile with the LUT
- □ Accuracy ~ 5 nm (@ 120 Hz)

Force measurements

Equipartition theorem:

$$\boldsymbol{E} = \frac{1}{2} \boldsymbol{k}_b \boldsymbol{T} = \frac{1}{2} \boldsymbol{k} \boldsymbol{x}^2$$

$$F = \frac{k_b T z}{\delta \mathbf{x}^2} \qquad \tau = \frac{12\pi^2 \eta R z}{F}$$

Strick et al. 1996 Science

Tweezers manipulation of Chromatin

a) Low force

Minimum stepsize of 25 nm is consistent with unwrapping of single wind

b) Intermediate force

c) High force

single pair FRET

Assembly of a triple-labeled

Coarse bulk characterization: • ~50% reconstituted nucleosome • ~30% FRET efficiency

TIRF microscopy spFRET

 Individual molecules can be distinguished

Positions of Cy3 and Cy5 correlate

Only a small fraction (~7%)
 shows FRET

Without 3 mM MgCl₂ only 1% FRET

spFRET dynamics

Challenges

- Chromatin is highly heterogeneous and it's dynamic folding is now known to be a dominant factor in gene regulation
- Physical models of chromatin dynamics are only marginally supported by experimental results
- □ Who, When, Where, What …. How????

Approach:

- □ Identification of relevant factors
- □ Nano-scale visualization in intact cells
- Purification of natively assembled intact structures
- □ Structural and dynamical analysis @ single molecule/nm level
- □ Assembly in vitro
- □ Educated modifications to test or modify functionality

Opportunities

- □ Smart surface modifications
- Patterning of functional surfaces
- □ Integration with micro-fluidics
- Combinations of functionalities
- □ High throughput devices
- In vivo tracking of single molecules

Maarten Kruithof, Wiepke Koopmans, Martijn de Jager, Fan-Tso Chien, Ineke de Boer Physics of life processes, LION, Leiden University

Collaborators:

Joke van Vucht, Colin Logie Nijmegen Centre for Molecular Life Sciences (NCMLS), Department of Molecular Biology, Nijmegen Alexander Brehm Adolf-Butenandt-Institut, Molekularbiologie, LMU, München, Germany Hans den Dulk, Jaap Brouwer Molecular Genetics, Leiden Institute of Chemistry, Leiden

Funding:

