Functional Nanostructures by Ionic Self-Assembly

Charl FJ Faul

Inorganic and Materials Chemistry, School of Chemistry University of Bristol

Brussels September 2006

Challenges in the design of functional nanostructures

Is it really that easy?

Focus of this session

- expertise and projects
- mid/long term goals
- opportunities and/or challenges

Outline

- Background why?
- Goals what?
- How?
- Conclusion and Outlook
- Acknowledgements

Background (why?)

- Construction with noncovalent interactions
- Self-organisation of tectons / codons
 - Beyond pre-organisation
 - Spontaneous but controlled / directed organisation at the molecular and supramolecular level
- Coupling of properties:
 - molecular macroscopic
 - stimulus response
- Dynamic devices (switching)

- Preparation of nanostructured bulk material soft (lc) functional
- Control over the structure-function-properties relationship through careful choice of starting materials
- Inclusion of dynamic properties to ensure switchability (programmed or directed synthesis, codons)

Application

Noncovalent Strategies (How?)

- •Simplexes
- •Catanionic
- •LbL

Ionic Self-Assembly (How? Our expertise)

• Oligoelectrolyte-surfactant complexes

- Electrostatic interactions to drive the organisation of matter + secondary packing motives
- Modular approach: multiple noncovalent interaction strategy, introduce functionalities

Molecular Toolbox

Current Projects

Functionality and Switching

The Questions ...

• What is the use of having a function if you cannot reversibly switch between two states?

- Routes to reversibly switching function:
 - through direct chemical action / interaction (doping, protonation etc.)
 - through switching structure (phase or chemical)

Switching structure (step-by-step approach)

- Is the dynamic nature of noncovalent interactions needed?
- What are the crucial materials property needed to address this question?
- Next level of complexity switching of structure/phase to lead to switching of function

Liquid Crystallinity

- Large alkyl volume for the facile production of LC materials!
 - $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$

- Control over materials properties through external stimuli
 - temperature, solvent, magnetic fields, electric fields etc.

Current Theme 1

Switching structure and function

Conductivity

Aniline-based nanostructures.

Oligoanilines

• TANI-surfactant

15-20 nm stacks of TANI units

Oligoanilines (contral)

• Conductivity?

Photo-orientation & Anisotropic properties

Photo-orientation

- Non-mechanical approach to alignment
- Relevant & Important for display technologies
- Proof-of-print
 materials

Photo-orientation

• Irradiation with polarized Ar laser, 488 nm

Properties ...

- Dichroic Ratios in the range of 20 50
- Satisfactory diffraction efficiency
- Efficient LC alignment layer
- Long-term and thermal stability –>12 months, up to 200°C
- Ease of synthesis, processability – (spin-coating, benign solvents)

Possible opportunity

- Combination of biological tectons with conducting TANI tectons?
- Defined biological function now switchable through phase changes?

Current Theme 2

Switching structure

New system – one step back

Covalent and H-bonding ...

Electrostatic & H-bonding

- Combination of noncovalent interactions?
 - Directionality from the H-bonds (covalent analogue)
 - Organised mesophase
 - Organogelator?
 - Switchability?

Multiple Interactions (contd)

Towards addressable structures...

- Investigate structure-properties relationship
 - synthesize new phosphodiester surfactants
 - changes in alkyl volumes, functionality
- Simple external stimuli -temperature, solvent for gelation
- Investigate changes in structure –synchrotron
 - -solid-state NMR
 - -IR etc.

Electrostatic & Stacking

Hydrogelator

Template / Scaffold

Nanoparticle synthesis

CdS

Possible opportunity

- Combination of biologically relevant tectons to form gels?
- Presentation of defined biological function in gel?

Current Theme 3

Investigating binding & structure

University of BRISTOL

more Bio than DNA?

University of BRISTOL

1.4

G-quartet structure

- Use IR for sugar conformationpLys?
- •Geometrical considerations

G-quartet

DNA analogue...

Polylysine-dCMP (PL-C) ISA Complex

University of BRISTOL

PL-C

+

PL-G

Soft Matter 2006, 2, 329

Some open questions ...

- What exactly is the degree of binding?
 dGMP vs dCMP
- What is the conformation of the pLys chain?
 - vs pDADMAC
 - oligopeptides
- What is the structure of the DNA analogue?
- Structure refinement / improvement?

Recognition?

Bio-Recognition

- Diketopiperazine receptor
- Rigid scaffold for recognition
- Two variable arms (tripeptides)
- Dye-marked for comb. approach
 - split-and-mix approach on resin
 - 31³ possibilities
- Synthesized arm only
- Comparison

Switching of recognition?

- Binding to Arg-Arg-X (where X = either Arg, Ser, Thr or Cys)
- Binding constants (1:2 binding, ITC experiments) – $K_1=2.5 \times 10^4 \text{ M}^{-1}$ and $K_2=150 \text{ M}^{-1}$
- Addition of surfactant immediate desorption
 ?
- ON/OFF switch only, or change in recognition?
- Would you be able to make a solid-state sensor?

Peptide-Surf Complex

Made solid state materials – thermotropic LCs

- Checked recognition capability (in solution, on beads)
- Now changed to His-His-X tripeptide sequences!

After binding ..

- Contact complex with His tripeptide?
- Marked shift to smaller scattering vector i.e. larger structure (3.15 nm to 3.68 nm)
- Change in phase:

- from lamellar (layered) to (?) hexagonal (columnar)
 - Change in structure & function!
 - Reversibility still an issue ...

Conclusion

- Facile ISA route to organise matter
- Toolbox for the production of functional LC materials
- Use of combinations of noncovalent interactions to tune phase behaviour, structure and function
- Switchability is on the horizon for a wide range of systems
- Still many basic questions to be answered

Towards Applications?

Structure \leftrightarrow (Materials)Properties \leftrightarrow Function

Designer Materials

Future Outlook

> ESF SONS Programme: SISAM

- Structure Elucidation of Shear-Oriented ISA Materials
- Prof. Olli Ikalla & Prof. Gerrit ten Brinke
- 🔏 🥑 Synthesis of functional tectons, materials
 - Surfactants (reactive), substituted perylenes, etc.
- - Collaboration with HP
 - Towards devices?

Acknowledgements

- Olli Ikkala, Teija Laitinen (HUT, Finland)
- Bernd Smarsly (MPIKGF, Germany)
- ISA Group
 - Richard Oakley, Judith Brown, Danielle Franke
 - Zhixiang Wei, Byram H. Ozer, Carmen Remde, Tierui Zhang, Irina Shekova, Franck Camerel, Ying Guan, Michael Bojdys, Desi Ganeva, Lawrence Higham
- Joachim Stumpe, Yuriy Zakrevskyy (FIAP, Germany)
- Markus Antonietti (Director, MPIKGF, Germany)
- MPG, ESF (SONS), EPSRC, RS, HP, UoB, Nuffield Foundation

Thank you for your attention!

Polymerisation in Organised Media

