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Plan of the talk

• Overview of the consortium

• Interactive computational systems (aka Reactive Systems) 
and motivations for “formal” methods

• Verification and synthesis

• Why synthesis can be reduced to a game problem ?

• Examples of important open problems in the area

• Why is our approach innovative ?

• Why is our project “exciting” ?
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What are Interactive 
Computational Systems 
(aka reactive systems) ?





300 horses power
100 processors



more and more software

Concurrency:      several hardware and software components                        
Heterogeneity:    digital (discrete time) and analog (continuous time)   
Uncertainty:        environment, exceptions handling

Text

Cellular Phone



Concurrency : 300 000 logical gates



11
10    stars

10      states
100,000



French Guniea, june 4, 1996





Reactive systems
Interactive computational systems

• Reactive systems are systems that maintain a continuous interaction 
with their environment, and they usually have several of the following 
properties:

• they are non-terminating systems (processes);

• they have to respect or enforce real-time properties;

• they have to cope with concurrency (several processes are 
executing concurrently);

• they are often embedded into an complex and safety critical 
environments.

• ... as a result: the specifications that have to meet RS are often very 
complex and as a result RS are difficult to design correctly ! 



Need for verification

• ... as they are difficult to develp correctly !

• ... and often safety critical !

⇒ we should verify them ! 

⇒ or construct them in a way that 

ensures their correctness !



The old impossible dream 
of computer scientists

• As soon as 1936, Turing has shown that fully 
automatic verification of programs is 
impossible 
(a.o. program termination is undecidable).

• Are programs or computer systems too 
complex to be analyzed using automated 
tools ? Yes, ...

• and no ...



System

ModelCompute

abstracts Predict

Mathematics

Bridge
Plane

Software ?

How do we cope with 
complexity in science ?



• Model construction: capture the essential aspects of the 
system (sometimes automatically);

• Model verification: algorithms to analyze models. 

(Clarke, Emerson, and Sifakis received the 2008-ACM Turing Award 
for their seminal works in that area).

Avantage de l’analyse de modèle par rapport à une analyse du système : le coût;
Avantage de l’analyse de modèle par rapport à la simulation : la couverture.



Formal models of 
reactive systems
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A toy example
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A toy example

Digital controller

Sensor

Commands

Sensor



Models of reactive systems

Train Gate Controller∣∣ ∣∣



Models of reactive systems

Gate

The model gathers information about the possible states of the gate, and 
the possible evolutions (triggered by events) of the states along time.

Defines sequences of states-events

Open ⎯Lower?→Down ⎯ε→Closed ⎯Raise?→Up ...
Open ⎯Lower?→Down ⎯Raise?→Up ⎯Lower?→Down ...
...

The language of the gate is:

{Open ⎯Lower?→Down ⎯ε→Closed ⎯Raise?→Up ...,
Open ⎯Lower?→Down ⎯Raise?→Up ⎯Lower?→Down ...
...}



Models of reactive systems

Train Gate Controller∣∣ ∣∣

L1

Train, Gate and Controller are modeled as 
automata that synchronize on common events. 
The resulting model is a (huge) graph whose 
paths are the possible behaviors of the system.



Models of reactive systems

Train Gate Controller∣∣ ∣∣

L1

Compact representation of a language 
(=infinite set of infinite traces, aka words).



Properties

An example of a property for our toy system:

“in all traces t, on all states of the trace t if the train is within the 
crossing, the gate is closed”.

☛ Property = set of traces.

☛ Formalized as a automaton, or a formula in a temporal 
logic.

☐ ( In ➝ Closed )
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Properties

An example of a property for our toy system:

“in all traces t, on all states of the trace t if the train is within the 
crossing, the gate is closed”.

☛ Property = set of traces.

☛ Formalized as an automaton, or a formula in a temporal 
logic.

☐ ( In ➝ Closed )



Systems and properties

Train Gate Controller∣∣ ∣∣

L1

          ☐ ( In ➝ Closed )

L2



Verification and 
Synthesis



Verification

... ⊨?      Φ∣∣ ∣∣ ∣∣

L1 L2

Question:   L1 ⊆? L2



Verification

... ⊨?      Φ∣∣ ∣∣ ∣∣

L1 L2

Question:   L1 ⊆? L2 Usually PSpace-hard



Synthesis

C?... ⊨      Φ∣∣ ∣∣∣∣

L1 L2

Question:   Find C such that L1 ⊆ L2



Main research efforts in
Computer Aided 

Verification and Synthesis

• Find good models for modeling reactive systems 
(automata and extensions, e.g. real-time);

• Study the complexity of verification and 
synthesis problems;

• Find algorithms to verify correctness of design 
models against properties;

• Find algorithms to synthesize components from 
specifications.



The synthesis problem 
reduced to a game problem



Env C? ⊨      Φ∣∣

L1 L2

Question:   Find C such that L1 ⊆ L2

The synthesis problem



0000

0101

1010

0100

1000

1101

1110

1111



0000

0101

1010

0100

1000

1101

1110

1111

Rounded 
positions belong 

to Player I



0000

0101

1010

0100

1000

1101

1110

1111

Rounded 
positions belong 

to Player I

Square positions 
belong to Player 2



0000

0101

1010

0100

1000

1101

1110

1111

Rounded 
positions belong 

to Player I

Square positions 
belong to Player 2

=The environment

The controller=



A game is played as follows: in each round, the game is in a position, if 
the game is in a rounded position, Player I resolves the choice for the next 
state, if the game is in a square position, Play 2 resolves the choice. The 
game is played for an infinite number of rounds.
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Player 1 = Environment
Player 2 = Controller

☛ The choices of the controller are to be interpreted as decisions that are to 
be taken to control the environment.

☛  The choices of the environment are beyond the control of the designer of the 
system and they must be interpreted as adversarial.
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=Trace, behavior of the system under design
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Play : 0000  0100  0101 1101 ... 

Is this a good or a bad play for Player 2 ?

Who is winning ?
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Who is winning ?

A winning condition (for Player 2) 
is a set of plays
W ⊆ (Q1 ∪ Q2)

ω

A property !



Game
=

Two-player game structure
+ 

Winning condition for Player 2



Game
=

Two-player game structure
+ 

Winning condition for Player 2

The specification !



Strategies

Players are playing according to strategies.

A Player k (=1,2) strategy is a function that 
given the positions visited so far prescribes the 
next move to play.

A Player k (=1,2) strategy is winning for 
objective W if when player k plays according to the 
strategy the resulting play is within W, no matter 
what Player 3-k is playing.



Winning strategies

=

Controllers that enforce 
winning plays



Examples of open 
problems in the area



Non zero sum games 
played on graphs

• In the example of game problems defined so far, we have 
given fully antagonist objectives to players: 

Player 2 is winning if the resulting play is in W, 
Player 1 is winning if the resulting play is not in W.

This is a very conservative view (the environment is 
demoniac).

• ... very often we would like to synthesize systems where 
each component has its own objectives.  Those objectives 
are not necessarily fully antagonist.



Non zero sum games 
played on graphs

C?...∣∣ ∣∣∣∣

Φ1 Φn-1 Φn

Can we use concepts like Nash equilibria, 
subgame perfect equilibria, secure equilibria 
to synthesize complex reactive systems ? 



Efficient synthesis for 
LTL objectives

• Two-player zero sum game played on a graph with 
winning conditions defined using a LTL formula are 
2-ExpTime Complete. 

• A theoretically optimal procedure is known 
since 1989 but this procedure is not usable in 
practice. The doubly exponential almost always shows 
up.

• We still need to better understand the structure of 
this problem in order to study heuristics based on 
new strong theoretical arguments.



From Qualitative to 
Quantitative

• A large number of results that are known in 
the field of games played on graphs are for 
qualitative objectives (boolean objectives);

• We need to study variants of those problems 
where the objectives are quantitative.  
This new results will be the theoretical basis 
for optimal controller synthesis. 



Why is our approach 
innovative ?

• The current state of the art in computer 
system design is still very ad-hoc;

• The theoretical basis for a modern system 
theory are still largely to be defined;

• Game theoretic formalisms are well 
suited to model systems build from several 
components as are modern computer systems.



Why is our project 
exciting ?

• Synthesis is a very ambitious goal: this would 
help designer to concentrate on important high 
level aspects of systems (their specification) and 
allow to avoid low level errors that are often very 
difficult to find.

• Game theory is a very elegant piece of 
mathematics. Games played on graphs are strongly 
related to important problems in logic and 
automata theory.



Research axes

• Axis 1. Adapted notions of games for synthesis of complex 
interactive computational systems. 
Non zero sum games, solution concepts, ...

• Axis 2. Games played on complex and infinite graphs.
Timed systems, recursive graphs, pushdown automata, games with counters, ...

• Axis 3. Games with quantitative objectives.
Stochastic games, games with costs, ...

• Axis 4. Game with incomplete information and over 
dynamic structures.
Dynamic networks, observation based strategies, need for randomized strategies, ....

• Axis 5. Heuristics for efficient game solving.
Better understand the structure of problems to fight prohibitive worst case complexities, tools 
implementation.



Possible cross-fertilization 
with other CRPs

• LINT: Game foundations of interactions.

• CFSC: computational complexity issues, 
compact representations.

• ... ?




