
GASICS
Games for Analysis and Synthesis

of Interactive Computational
Systems

Jean-François Raskin
Université Libre de Bruxelles

Belgium

LogICCC kick-off meeting, Prague, Oct. 6, 2008

Plan of the talk

• Overview of the consortium

• Interactive computational systems (aka Reactive Systems)
and motivations for “formal” methods

• Verification and synthesis

• Why synthesis can be reduced to a game problem ?

• Examples of important open problems in the area

• Why is our approach innovative ?

• Why is our project “exciting” ?

The GASICS consortium

RWTH Aachen
(DFG)

U Aalborg
(FNU)

Université Libre de Bruxelles
(FNRS)

RWTH Aachen
(DFG)

U Aalborg
(FNU)

Université Libre de Bruxelles
(FNRS)

U Paris 7
ENS Cachan

U Warwick

RWTH Aachen
(DFG)

U Aalborg
(FNU)

Université Libre de Bruxelles
(FNRS)

U Paris 7
ENS Cachan

U Warwick

Prof. Wolfgang Thomas.

Prof. Marcin Jurdzinski

Prof. Kim Larsen

Prof. Jean-François Raskin Dr. Jean-Eric Pin
Dr. Nicolas Markey

What are Interactive
Computational Systems
(aka reactive systems) ?

300 horses power
100 processors

more and more software

Concurrency: several hardware and software components
Heterogeneity: digital (discrete time) and analog (continuous time)
Uncertainty: environment, exceptions handling

Text

Cellular Phone

Concurrency : 300 000 logical gates

11
10 stars

10 states
100,000

French Guniea, june 4, 1996

Reactive systems
Interactive computational systems

• Reactive systems are systems that maintain a continuous interaction
with their environment, and they usually have several of the following
properties:

• they are non-terminating systems (processes);

• they have to respect or enforce real-time properties;

• they have to cope with concurrency (several processes are
executing concurrently);

• they are often embedded into an complex and safety critical
environments.

• ... as a result: the specifications that have to meet RS are often very
complex and as a result RS are difficult to design correctly !

Need for verification

• ... as they are difficult to develp correctly !

• ... and often safety critical !

⇒ we should verify them !

⇒ or construct them in a way that

ensures their correctness !

The old impossible dream
of computer scientists

• As soon as 1936, Turing has shown that fully
automatic verification of programs is
impossible
(a.o. program termination is undecidable).

• Are programs or computer systems too
complex to be analyzed using automated
tools ? Yes, ...

• and no ...

System

ModelCompute

abstracts Predict

Mathematics

Bridge
Plane

Software ?

How do we cope with
complexity in science ?

• Model construction: capture the essential aspects of the
system (sometimes automatically);

• Model verification: algorithms to analyze models.

(Clarke, Emerson, and Sifakis received the 2008-ACM Turing Award
for their seminal works in that area).

Avantage de l’analyse de modèle par rapport à une analyse du système : le coût;
Avantage de l’analyse de modèle par rapport à la simulation : la couverture.

Formal models of
reactive systems

x

y

A toy example

x

y

A toy example

Digital controller

Sensor

Commands

Sensor

Models of reactive systems

Train Gate Controller∣∣ ∣∣

Models of reactive systems

Gate

The model gathers information about the possible states of the gate, and
the possible evolutions (triggered by events) of the states along time.

Defines sequences of states-events

Open ⎯Lower?→Down ⎯ε→Closed ⎯Raise?→Up ...
Open ⎯Lower?→Down ⎯Raise?→Up ⎯Lower?→Down ...
...

The language of the gate is:

{Open ⎯Lower?→Down ⎯ε→Closed ⎯Raise?→Up ...,
Open ⎯Lower?→Down ⎯Raise?→Up ⎯Lower?→Down ...
...}

Models of reactive systems

Train Gate Controller∣∣ ∣∣

L1

Train, Gate and Controller are modeled as
automata that synchronize on common events.
The resulting model is a (huge) graph whose
paths are the possible behaviors of the system.

Models of reactive systems

Train Gate Controller∣∣ ∣∣

L1

Compact representation of a language
(=infinite set of infinite traces, aka words).

Properties

An example of a property for our toy system:

“in all traces t, on all states of the trace t if the train is within the
crossing, the gate is closed”.

☛ Property = set of traces.

☛ Formalized as a automaton, or a formula in a temporal
logic.

☐ (In ➝ Closed)

Properties

An example of a property for our toy system:

“in all traces t, on all states of the trace t if the train is within the
crossing, the gate is closed”.

☛ Property = set of traces.

☛ Formalized as a automaton, or a formula in a temporal
logic.

☐ (In ➝ Closed)

Properties

An example of a property for our toy system:

“in all traces t, on all states of the trace t if the train is within the
crossing, the gate is closed”.

☛ Property = set of traces.

☛ Formalized as an automaton, or a formula in a temporal
logic.

☐ (In ➝ Closed)

Systems and properties

Train Gate Controller∣∣ ∣∣

L1

 ☐ (In ➝ Closed)

L2

Verification and
Synthesis

Verification

... ⊨? Φ∣∣ ∣∣ ∣∣

L1 L2

Question: L1 ⊆? L2

Verification

... ⊨? Φ∣∣ ∣∣ ∣∣

L1 L2

Question: L1 ⊆? L2 Usually PSpace-hard

Synthesis

C?... ⊨ Φ∣∣ ∣∣∣∣

L1 L2

Question: Find C such that L1 ⊆ L2

Main research efforts in
Computer Aided

Verification and Synthesis

• Find good models for modeling reactive systems
(automata and extensions, e.g. real-time);

• Study the complexity of verification and
synthesis problems;

• Find algorithms to verify correctness of design
models against properties;

• Find algorithms to synthesize components from
specifications.

The synthesis problem
reduced to a game problem

Env C? ⊨ Φ∣∣

L1 L2

Question: Find C such that L1 ⊆ L2

The synthesis problem

0000

0101

1010

0100

1000

1101

1110

1111

0000

0101

1010

0100

1000

1101

1110

1111

Rounded
positions belong

to Player I

0000

0101

1010

0100

1000

1101

1110

1111

Rounded
positions belong

to Player I

Square positions
belong to Player 2

0000

0101

1010

0100

1000

1101

1110

1111

Rounded
positions belong

to Player I

Square positions
belong to Player 2

=The environment

The controller=

A game is played as follows: in each round, the game is in a position, if
the game is in a rounded position, Player I resolves the choice for the next
state, if the game is in a square position, Play 2 resolves the choice. The
game is played for an infinite number of rounds.

0000

0101

1010

0100

1000

1101

1110

1111

Rounded positions belong to Player I
Square positions belong to Player 2

0000

0101

1010

0100

1000

1101

1110

1111

Player 1 = Environment
Player 2 = Controller

☛ The choices of the controller are to be interpreted as decisions that are to
be taken to control the environment.

☛ The choices of the environment are beyond the control of the designer of the
system and they must be interpreted as adversarial.

0000

0101

1010

0100

1000

1101

1110

1111

Play : 0000

0000

0101

1010

0100

1000

1101

1110

1111

Play : 0000 0100

0000

0101

1010

0100

1000

1101

1110

1111

Play : 0000 0100 0101

0000

0101

1010

0100

1000

1101

1110

1111

Play : 0000 0100 0101 1101

0000

0101

1010

0100

1000

1101

1110

1111

Play : 0000 0100 0101 1101 ...

0000

0101

1010

0100

1000

1101

1110

1111

Play : 0000 0100 0101 1101 ...

Who is winning ?

0000

0101

1010

0100

1000

1101

1110

1111

Play : 0000 0100 0101 1101 ...

Who is winning ?

=Trace, behavior of the system under design

0000

0101

1010

0100

1000

1101

1110

1111

Play : 0000 0100 0101 1101 ...

Is this a good or a bad play for Player 2 ?

Who is winning ?

0000

0101

1010

0100

1000

1101

1110

1111

Who is winning ?

A winning condition (for Player 2)
is a set of plays
W ⊆ (Q1 ∪ Q2)

ω

0000

0101

1010

0100

1000

1101

1110

1111

Who is winning ?

A winning condition (for Player 2)
is a set of plays
W ⊆ (Q1 ∪ Q2)

ω

A property !

Game
=

Two-player game structure
+

Winning condition for Player 2

Game
=

Two-player game structure
+

Winning condition for Player 2

The specification !

Strategies

Players are playing according to strategies.

A Player k (=1,2) strategy is a function that
given the positions visited so far prescribes the
next move to play.

A Player k (=1,2) strategy is winning for
objective W if when player k plays according to the
strategy the resulting play is within W, no matter
what Player 3-k is playing.

Winning strategies

=

Controllers that enforce
winning plays

Examples of open
problems in the area

Non zero sum games
played on graphs

• In the example of game problems defined so far, we have
given fully antagonist objectives to players:

Player 2 is winning if the resulting play is in W,
Player 1 is winning if the resulting play is not in W.

This is a very conservative view (the environment is
demoniac).

• ... very often we would like to synthesize systems where
each component has its own objectives. Those objectives
are not necessarily fully antagonist.

Non zero sum games
played on graphs

C?...∣∣ ∣∣∣∣

Φ1 Φn-1 Φn

Can we use concepts like Nash equilibria,
subgame perfect equilibria, secure equilibria
to synthesize complex reactive systems ?

Efficient synthesis for
LTL objectives

• Two-player zero sum game played on a graph with
winning conditions defined using a LTL formula are
2-ExpTime Complete.

• A theoretically optimal procedure is known
since 1989 but this procedure is not usable in
practice. The doubly exponential almost always shows
up.

• We still need to better understand the structure of
this problem in order to study heuristics based on
new strong theoretical arguments.

From Qualitative to
Quantitative

• A large number of results that are known in
the field of games played on graphs are for
qualitative objectives (boolean objectives);

• We need to study variants of those problems
where the objectives are quantitative.
This new results will be the theoretical basis
for optimal controller synthesis.

Why is our approach
innovative ?

• The current state of the art in computer
system design is still very ad-hoc;

• The theoretical basis for a modern system
theory are still largely to be defined;

• Game theoretic formalisms are well
suited to model systems build from several
components as are modern computer systems.

Why is our project
exciting ?

• Synthesis is a very ambitious goal: this would
help designer to concentrate on important high
level aspects of systems (their specification) and
allow to avoid low level errors that are often very
difficult to find.

• Game theory is a very elegant piece of
mathematics. Games played on graphs are strongly
related to important problems in logic and
automata theory.

Research axes

• Axis 1. Adapted notions of games for synthesis of complex
interactive computational systems.
Non zero sum games, solution concepts, ...

• Axis 2. Games played on complex and infinite graphs.
Timed systems, recursive graphs, pushdown automata, games with counters, ...

• Axis 3. Games with quantitative objectives.
Stochastic games, games with costs, ...

• Axis 4. Game with incomplete information and over
dynamic structures.
Dynamic networks, observation based strategies, need for randomized strategies,

• Axis 5. Heuristics for efficient game solving.
Better understand the structure of problems to fight prohibitive worst case complexities, tools
implementation.

Possible cross-fertilization
with other CRPs

• LINT: Game foundations of interactions.

• CFSC: computational complexity issues,
compact representations.

• ... ?

