

The Great Train Race: Britain vs. France
Converging paths of development, 1827-1913
[rail density=kilometers of rail
by 100,000 inhabitants]
France and England \& Wales: Kilometers of Railway per 100,000 people

The Growth of the rail network in France 1827-1914

Uneven Development: Geographic Clustering of Rail Transport in 1890

red = clusters of high rail density
blue $=$ clusters of low or negligible rail density

Digital Terrain Model: the influence of topography on regional differences in the accessibility of rail transport, 1890

The Rail System in 1890 and the Challenge of Topography

The Growth of rail network in England and Wales, 18451914

By what period did the railways reach rural areas?

The Growth of the Rail System in England and Wales 1830-1914

Source: The Victorian Railway GIS

Patterns of spatial auto-correlation of net migration by decade,
1851-61 through 1901-1911
(results from localized Moran' s I statistics)

Animation

England and the Wales: Population Change because of net migration, 1861-91

Percent Population Change

 due to Net Migration
net migration = inter-censusl population change - change from natural increase (births-deaths) during the same period

Estimating the spatial and temporal relationship between rail transport and net migration: an Geographically Weighted Regression (GWR)

Model
Population change due to net migration $=1$) Rail density
+2) Distance
from a major town

$$
+3)
$$

Ruggedness of the terrain

Period	The Statistical Significance of rail density (km rail/1000 km2 of area)	R-Square	N. of Regions
$1861-71$	Not significant	.24	595
$1871-81$	Significant	.42	606
$1881-91$	Significant	.39	616

Ordinary least-squares regression (OLS) is a global statistical technique: it estimates the model parameters over the whole study area. GWR is a local statistical technique: it estimates model parameters for each of many subgroups or regions, producing a parameter estimate for every subgroup.

Spatially varying effects of rail density on net migration 1871-81
 (result of GWR analysis)

Interpretation: the relationship between rail transport and population change due to net migration varied significantly in time and in space

In rural regions: from 1870s until 1890, a higher rates of rail density fostered new or expanded economic opportunities, which tended to diminish rates of out migration, and especially in parts of central and southern Wales, the southwest and far northwest.

> In urban areas: rail density was so high that its effect on net migration was probably negligible.

Théophile-Alexandre Steinlen, 1894

Rail density and the percent population change from 1871 to 1881 due net migration, England and Wales

correlation [r] $=.28$

Scatterplot of Percent Population Change due to Net Migration (1781-81) and Rail Density (1876) in Rural Registration Districts

in migration
(Rail Density $=\mathrm{km}$ rail lines $/ 100 \mathrm{~km}^{2}$)
(Rural = population density $<=100$ persons $/ \mathrm{km}^{2}$)

Rail Density 1876

Rail density
rail density $=$ kilometers of line of rail by 100 km 2 of area
net migration = inter-censusl population change - change from natural increase (births-deaths) during the same period

Concepts of geographical spatiality

cultural change

㫿
The city in the country

1905: A group of Dijonnais bourgeois arrives at St Saine l' Abbaye by the narrow gauge railway running from Dijon to Châtillions-surSeine.

Destination: Saint Seine l'Abbaye

Population in 1905: 550

NORTH EASTERN RAILWAY

 WVy Whum frop Filthomene.

Q M

 APPLY AT ANY

