

EUROCORES Programme European Collaborative Research

Final FoNE Conference Miraflores de la Sierra, Madrid, Spain 9-13 September 2009

BOOK OF ABSTRACTS

www.esf.org/fone

EUROPEAN SCIENCE FOUNDATION

The European Science Foundation (ESF) is an independent, nongovernmental organisation of national research organisations.

Our strength lies in the membership and in our ability to bring together the different domains of European science in order to meet the scientific challenges of the future. ESF's membership currently includes 77 influential national funding agencies, research-performing agencies and academies from 30 nations as its contributing members.

Since its establishment in 1974, ESF, which has its headquarters in Strasbourg with offices in Brussels and Ostend, has assembled a host of research organisations that span all disciplines of science in Europe, to create a common platform for cross-border cooperation.

We are dedicated to supporting our members in promoting science, scientific research and science policy across Europe. Through its activities and instruments ESF has made major contributions to science in a global context. The ESF covers the following scientific domains:

- Humanities
- Life, Earth and Environmental Sciences
- Medical Sciences
- Physical and Engineering Sciences
- Social Sciences
- Marine Sciences
- Nuclear Physics
- Polar Sciences
- Radio Astronomy Frequencies
- Space Sciences

EUROCORES

The aim of the European Collaborative Research (EUROCORES) Scheme is to enable researchers in different European countries to develop collaboration and scientific synergy in areas where European scale and scope are required to reach the critical mass necessary for top class science in a global context.

The scheme provides a flexible framework which allows national basic research funding and performing organisations to join forces to support excellent European research in and across all scientific areas.

The European Science Foundation (ESF) provides scientific coordination and support for networking activities of funded scientists currently through the EC FP6 Programme, under contract no. ERAS-CT-2003-980409.

Research funding is provided by participating national organisations. **www.esf.org/eurocores**

THE FOLLOWING NATIONAL FUNDING ORGANISATIONS SUPPORT THE FONE PROGRAMME:

• Fonds zur Förderung der wissenschaftlichen Forschung (FWF) Austrian Science Fund, Austria

Fonds voor Wetenschappelijk Onderzoek (FWO)

Research Foundation Flanders, Belgium

Grantová agentura České republiky (GAČR)

Czech Science Foundation, Czech Republic

• Commissariat à l'Energie Atomique / Direction des Sciences de la Matière (CEA)

Institute for Basic Research of the Atomic Energy Commission, France • Enterprise Ireland, Ireland

• Consiglio Nazionale delle Ricerche (CNR)

National Research Council, Italy

• Ministerstwo Nauki I Szkolnictwa Wyzszego (MNISW)

Ministry of Science and Higher Education, Poland

• Ministerio de Ciencia e Innovación (MCI)

Ministry of Science and Innovation, Spain

Schweizerischer Nationalfonds (SNF)

Swiss National Science Foundation, Switzerland

• Engineering and Physical Sciences Research Council (EPSRC), United Kingdom

This workshop is supported by funds from the European Commission Sixth Framework Programme under contract n. ERAS-CT-2003-980409

Final FoNE Conference

Miraflores de la Sierra, Madrid, Spain 9-13 September 2009

ORGANISING COMMITTEE

Farkhad Aliev- Chair, Universidad Autonoma de Madrid, ES

Merlyne de Sousa, University of Sheffield, UK

Chris Marrows, University of Leeds, UK

LOCAL COMMITEE

Raul Villar, Ahmad Awad, David Herranz, Antonio Lara, Andrés Gómez-Ibarlucea

Universidad Autonoma de Madrid, ES

CONFERENCE PROGRAMME	
ABSTRACTS	11
Oral Presentations	12
Poster Presentations	51
	64

SCIENTIFIC PROGRAMME

Day 1	Wednesday 9 Septe	mber
15.00-18.00	Arrival	
15.00-18.00	Registration in Residencia	a la Cristalera (Miraflores de la Sierra)
18.00-20.30	OPERNING+ Session DEW	INT
18.30-19.30	Klaus Kern (invited speaker, 50+10 min)	Nanoscale Electronic Contacts: From Single Molecule Junctions to Graphene Doping
19.30-20.00	Alessandro Betti (25+5 min)	Enhanced shot noise in Carbon Nanotube Field Effect Transistors
20.00-20.30	Giuseppe lannaccone (25+5 min)	Exploration of the perspectives of graphene-based transistors in terms of device performance and large-scale integration

21.00 Dinner at Cristalera Residence

Day 2	Thursday 10 September	
09.00-13.00	Session 1: SPINTRA	
09.00-9.30	Michael Coey (25+5 min)	Domain wall noise in nanostructured hard magnets
9.30-10.30	Bogdan R. Bułka (25+5 min)	Threshold effects in transport in three-terminal ballistic junctions
	Procolo Lucignano (SPINTRA, 20+5 min)	Kondo conductance in metallic nanocontacts with magnetic impurities
10.30-11.00	Chris van Haesendonck (25+5 min)	Electronic and magnetic properties of self- organized Co islands on Au(111)
11.00-11.30	Coffee Break	Poster Set up
11.30-12.00	Farkhad Aliev (25+5 min)	Magnetization dynamics and noise in spintronic devices
12.00-12.30	Arturo Tagliacozzo	Competition between Rashba spin-orbit coupling and Hund's ferromagnetic exchange interaction in

	25+5 min)	the Kondo correlations of a quantum dot with four electrons
12.30-13.00	Vit Novak (25+5 min)	GaMnAs: model material for spintronics
13.00-14.30	Lunch at Cristalera Reside	nce
14.30-18.00	Session 2: SPINCURRENT	
14.30-16.00	Maxim Tsoi (invited speaker 50+10 min)	Spintronics: from ferromagnets to antiferromagnets
	Michel Viret (invited speaker (25+5 min)	Domain wall resistance and spin torque in constrictions down to atomic contacts
16.00-16.30	Coffee Break	
16.30-17.00	Phillipp Eib (25+5 min)	Vortex domain wall dynamics in NiFe nanowires
17.00-17.30	lgor Kuzmenko (25+5 min)	Canted magnetization texture in ferromagnetic tunnel junctions
17.30-18.00	Serban Lepadatu (25+5 min)	Resonant Domain Wall Movement in Pinning Potentials
18.00-19.00	Dieter Weiss (invited speaker, 50+10 min)	Phase coherent phenomena in ferromagnetic (Ga,Mn)As
19.00-20.30	POSTER SESSION 1	
	Scientific Meeting FONE	
21.00	Dinner at Cristalera Reside	ence

Day 3	Friday September 1	1
09.00-11.00	Session 3: DEWIN	Π
09.00-10.00	S. Jejurikar and M. De Souza (50+10 min)	Carbon based Electronics: A Perspective from Theory and Experiment
10.00-10.30	Shu- Pei Oei (25+5 min)	CNTs vs. SiNWs for Future Electronics
10.30-11.00	Hanz Kosina (25+5 min)	Transport modeling for Nanowires and Nanotubes
11.00-13.00	Coffee break	and poster session 2
13.00-14.00	Lui	nch at Cristalera Residence
afternoon (from, 14-30)	Visit to Medieval o	city of Segovia with Conference Dinner

Day 4	Saturday Septem	ber 12
09.00-11.00	Session 4: SpiCo	
09.00-09.30	Yashar Komijani (25+5 min)	0.7-feature in p-GaAs Quantum Point Contacts
09.30-10.00	Stefano Chesi (25+5 min)	Quantum Hall ferromagnetic states and spin-orbit interactions in the fractional regime
10.00-10.30	Mircea Trif (25+5 min)	Relaxation of hole spins in quantum dots via two-phonon processes
10.30-11.00	Silvano De Franceschi 25+5 min)	Spin-dependent transport in bottom-up semiconductor nanostructures
11.00-11.30	Coffee break +	poster session

11.30-12.20	Robert Stamps (invited speaker, 40+10 min)	Exchange anisotropy, exchange bias and exchange springs
12.20-13.00	Vitali Metlushko (invited speaker 35+5 min)	Problems and Solutions with Integrating Magnetic Nanostructures into Functional 3-D Devices
13.00-15.00	Lunch at Cris	stalera Residence
15.00-16.00	Session 5 IMPR	ESS
15.00-15.30	Jamie Warner (25+5 min)	Electron spin resonance studies of purified nanotubes separated into metallic and semiconducting varieties.
15.30-16.00	Kuzmany Hans (25+5 min)	Towards an Engineering of Spin Chains Inside SWCNTs with Controlled Spin Separation
16.00-16.25 16.25-18.00	Cofee Break Session 6 You	ng Research ORAL SESSION
16.25-16.50	Maciej Misiorny (SPINTRTA 25+5min)	Spin effects in transport through a single-molecule magnet in the Kondo regime
16.50-17.30	David Herranz (SPINTRA, 15+5 min)	Asymmetric dependence of 1/f noise on bias in fully epitaxial Fe/MgO/Fe magnetic tunnel junctions
	Ahmad Awad	Spin wave modes in circular soft magnetic dots in vortex-
	(SPINTRA, 15+5 min)	state under in-plan magnetic field
17.30-18.00	M. Mucha- Kruczynski (SpiCo,. 25+5 min)	Theory of magneto-optical measurements of bilayer graphene
18.00-18.30	Coffee break +	Poster session
18.30-20.00	Scientific Meet	ings of FONE Projects
21.00	Dinner at Cristal	lera Residence
Day 5	Sunday September	13

	Session 7
9.00-10.00	Discussion/wrap-up session on the outcome and impact of the FoNE programme and future perspectives
CLOSING	
13.00-14.00	Lunch at Cristalera Residence and DEPATURES

ABSTRACTS

ORAL PRESENTATIONS

Wednesday 9 September

Klaus Kern	Nanoscale Electronic Contacts:
	From Single Molecule Junctions to Graphene
Presentation type : Invited	Doping Klaus Kern
Max Planck Institute for Solid State Research	(Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-70569 Stuttgart, Germany and Ecole Polytechnique Fédérale de Lausanne – EPFL, CH-1015 Lausanne, Switzerland
Nanoscale Science Department 70569 Stuttgart Germany Tel: +49 711 689 1660 Fax: +49 711 689 1662 Email: k.kern@fkf.mpg.de	Electron transport through metal-molecule contacts greatly affects the operation and performance of electronic devices based on organic semiconductors and is at the heart of molecular electronics exploiting single molecule junctions. Much of our understanding of the charge injection and extraction processes in these systems relays on our knowledge of the potential barrier at the contact. Despite significant experimental and theoretical advances in our understanding of electron transport in atomic and molecular junctions a
FONE Project: Invited	clear rationale of the contact barrier at the single atom/molecule level is missing.
	We exploit scanning tunneling microscopy to probe directly the nanocontact between single atoms and molecules and a metal electrode. For single cobalt atom contacts we find a dependence of the Kondo scattering on the local atomic geometry, which can be related to the delicate interplay between the structural relaxations and the electronic properties in the near-contact regime. For metal-molecule nanocontacts, contrary to the common assumption of a uniform barrier, our experiments reveal a substantial variation on the sub-molecular scale. This behaviour is ascribed to the interaction between specific molecular groups and the metal electrode. Guided by this result we introduce a novel scheme to locally manipulate the potential barrier of molecular nanocontacts.
	Metal contacts are also crucial for the operation of graphene based devices. Scanning photocurrent microscopy reveals that these contacts lead to potential steps that act as transport barriers. In this technique, the short-circuit photocurrent detected at zero drain-source bias is a measure of the local-electric-potential gradient. Evaluation of the gate-dependent short-circuit photocurrent at the contacts shows that gold as a high-work-function metal leads to local p-type doping of the sheet, whereas the low-work-function metal titanium imparts local n-type doping. Photoemission and transport experiments further reveal that the gold contacts not only provide an efficient route for hole doping of graphene but also effect the localization properties of the Dirac-like states by spin-orbit coupling.

Alessandro Betti	
Presentation type : Oral	Enhanced shot noise in Carbon Nanotube Field Effect Transistors Alessandro Betti (1), Gianluca Fiori (1), Giuseppe Iannaccone (1,2)
Università di Pisa, via Caruso 16, Pisa (Italy) Dipartimento di Ingegneria dell'Informazione: Elettronica, Informatica, Telecomunicazioni 56122 Pisa Italy Tel: +390502217639 Fax: +390502217522 Email: alessandro.betti@iet.unipi.it Project 05-FONE-FP-008 /Device Electronics based on nanoWires and NanoTubes (DEWINT)	 (1.2) (1) Dipartimento di Ingegneria dell'Informazione: Elettronica, Informatica, Telecomunicazioni. Univeristà di Pisa, Via Caruso 16, 56122 Pisa, Italy (2) IEIIT-CNR, Italy We present a numerical investigation of shot noise in Carbon Nanotube Field Effect Transistors, based on statistical quantum transport simulations of randomly injected electrons from the contacts and the self-consistent solution of the electrostatic and transport equations [1]. In order to consider both the effects of Pauli exclusion and Coulomb repulsion among charge carriers, an analitical formula for the noise power spectral density has been derived by introducing statistical properties of the scattering matrix within a second-quantization many-body description[2]. Through Monte Carlo simulations on an ensemble of different configurations of occupied states injected from the contacts, our model predicts a shot noise enhancement in ballistic [25.0] CNT-FETs due to a positive correlation between holes trapped in bound states in the channel and thermionic electrons injected from the source reservoir, which can lead to a Fano factor at room temperature up to 1.22. Such enhancement, which can only be captured considering Coulomb interaction among charge carriers, arises from the source. In such a situation, holes incoming from the drain are trapped in bound states in the device region, lowering the barrier height and therefore increasing the injection of thermionic electrons. Thus a positive correlation between fluctuations of the number of electrons and holes is the device region is caused by localized states in the valence band. (1] A. Betti, G. Fiori and G. lannaccone, "Shot noise suppression in quasi one-dimensional Field Effect Transistors", submitted to IEEE-TED http://arxiv.org/abs/0812.5034 (2] A. Betti, G. Fiori and G. lannaccone, "Shot noise suppression in quasi one-dimensional Field Effect Transistors", submitted to IEEE-TED http://arxiv.org/abs/0812.5034

Giuseppe Iannaccone	Exploration of the perspectives of graphene- based transistors in terms of device performance and large-scale integration Giuseppe lannaccone (1,2), Gianluca Fiori (2)
resentation type . Ordi	(1) IEIIT-CNR (2) University of Pisa, Italy
IEIIT-CNR and University of Pisa Dipartimento di Ingegneria dell'Informazione: Elettronica, Informatica, Telecomunicazioni 56122 Pisa Italy Tel: +39 050 2217677 Fax: +39 050 2217522 Email: g.iannaccone@iet.unipi.it Project 05-FONE-FP-008 /Device Electronics based on nanoWires and NanoTubes (DEWINT)	The perspective of graphene-based electronics ranks high among the many reasons for the explosive growth of interest in graphene in recent years. Graphene has very promising and intriguing transport properties, but also a serious drawback for electronics: it has no native energy gap, precluding the possibility of shutting off device current. We have explored, with numerical and analytical modeling, several different options to induce a gap in graphene and to realize transistor structures, in order to assess the actual potential of the material in electronics. Among the different options for inducing a gap we have considered lateral confinement in graphene nanoribbons [1,2] symmetry breaking due to a vertical electric field in bilayer graphene [3,4,5], symmetry breaking in epitaxial graphene in SiC substrate [6]. As far as device structures are concerned we have considered standard MOSFETs [1,3,4,6,7], Schotty Barrier MOSFETs [2] and Tunnel FETs [5]. In the talk we shall discuss the relative advantages and disadvantages of the different options. The small energy gap still remains the main problem of graphene channels manufacturable with present-day technology. The Tunnel FET with a bilayer graphene channel is the most promising device structure for low-power operation.
	 [1] G. Fiori, G. lannaccone, "Simulation of Graphene Nanoribbon Field-Effect Transistors", IEEE-EDL Vol. 28 (8), pp. 760-762, 2007 [2] Y. Yoon et al. "Performance Comparison of Graphene Nanoribbon FETs With Schottky Contacts and Doped Reservoirs", IEEE-TED, Vol. 55 (9), pp. 2314-2323, 2008. [3] M. Cheli, G. Fiori, G. lannaccone, "An analytical model of Bilayer-Graphene Field Effect Transistor", submitted to IEEE-TED [4] G. Fiori, G. lannaccone, "On the Possibility of Tunable-Gap Bilayer Graphene FETs", IEEE-EDL, Vol. 30 (3), pp. 261-264, 2009 [5] G. Fiori, G. lannaccone, "Ultra-low-voltage bilayer graphene tunnel FET", submitted to IEEE-EDL, (http://arxiv.org/abs/0906.1254v1) [6] M. Cheli, P. Michetti, G. lannaccone "Physical Insights on Nanoscale FETs based on epitaxial graphene on SiC", to be presented at ESSDERC 2009. [7] P. Michetti, G. Mugnaini, G. lannaccone, "Analytical model of nanowire FETs in a partially ballistic or dissipative transport regime", IEEE-TED, in Print.

Thursday 10 September

Dieter Weiss	
-	Phase coherent phenomena in ferromagnetic (Ga Mn)As
Invited	Weiss Dieter
	University of Regensburg
University of Regensburg Experimental and Applied Physics 93040 Regensburg Germany Tel: +499419433197 Fax: +499419433196 Email: dieter.weiss@physik.uni- regensburg.de	The discovery of ferromagnetic III-V semiconductor materials like (Ga,Mn)As has generated a lot of interest as these materials combine ferromagnetic properties, typical for metals, with the versatility of semiconductors. The resistance in these materials displays, as a function of temperature or magnetic field <i>B</i> , a rich phenomenology and allows, e.g., to extract the Curie temperature from transport measurements. Despite the high crystalline quality of the material. (Ga,Mn)As is a quite disordered conductor on the verge of the metal-insulator transition (MIT). For Mn concentrations on the metallic side of the MIT the typical mean free path <i>l</i> _e of the holes is a few lattice constants. Hence it was until recently an open issue whether phase coherent phenomena can be observed in this material. In my talk I will mainly focus on experiments which allow to explore phase coherent phenomena in (Ga,Mn)As. The analysis of the amplitude of universal conductance fluctuations allows extracting both, the phase coherence length and its temperature dependence which follows a $T^{-1/2}$ law [1]. The observation of Aharonov-Bohm-oscillations in suitably small ring geometries confirms the size of the phase coherence lengths which is typically of order 100 nm at 20 mK. In addition, the observation of weak localization/antilocalization provides an independent means to determine the phase coherence lengths [2,3]. Fits of the low <i>B</i> magneto-conductance corrections permit to extract the spin-flip length L_{SO} as a second characteristic lengths, the experiments delivered consistent results. At low temperatures the resistance increases in metallic one- two- and three-dimensional (Ga,Mn)As amples. This effect can be described to electron-electron interaction (EEI) [4]. By analyzing the conductivity correction due to enhanced EEI the electrical different dimensionality. Using the Einstein relation allows to deduce the effective density of states of (Ga,Mn)As at the Fermi energy. The result suggests that the Fermi energy in metall
	Konrad Wagner, Janusz Sadowski, Ursula Wurstbauer and

M Si a	Verner Wegscheider. Financial support by the German cience Foundation (DFG) via SFB 689 is gratefully cknowledged.
	 K. Wagner, M. Reinwald, W. Wegscheider, D. Weiss, 'Dephasing in (Ga,Mn)As nanowires and rings', Phys. Rev. Lett. 97, 056803 (2006)
	[2] D. Neumaier, K. Wagner, S. Geißler, U. Wurstbauer, J. Sadowski, W. Wegscheider, and D. Weiss, 'Weak Localization in ferromagnetic (Ga,Mn)As nanostructures', Phys. Rev. Lett. 99, 116803 (2007)
	 [3] V. K. Dugaev, P. Bruno, and J. Barnaś, Comment on 'Weak Localization in Ferromagnetic (Ga,Mn)As Nanostructures', Phys. Rev. Lett. 101, 129702 (2008); D. Neumaier, K. Wagner, S. Geißler, U. Wurstbauer, J. Sadowski, W. Wegscheider, D. Weiss, Reply, ibid
	 [4] <u>D. Neumaier</u>, <u>M. Schlapps</u>, <u>U. Wurstbauer</u>, <u>J. Sadowski</u>, <u>M. Reinwald</u>, <u>W. Wegscheider</u>, <u>D. Weiss</u>, 'Electron-electron interaction in 2D and 1D ferromagnetic (Ga,Mn)As', Phys. Rev. B 77, 041306 (2008)

Bogdan R. Bułka	Threshold effects in transport in three-terminal
Presentation type : Oral	J. Wróbel (1), P. Zagrajek (1), B.R. Bułka (2), A. Tagliacozzo (3), M. Bek (2), G. Grabecki (1), M. Czapkiewicz (1), K. Fronc (1), R. Hey (4), K. H. Ploog (4), G. Springholz (5), G. Bauer (5), T. Dietl (1,6)
Institute of Molecular Physics. Polish Academy of Sciences 60-179 Poznan Poland Tel: +48-61-8695152 Email:	 Institute of Physics, PAS, Warsaw, Poland, (2) Institute of Molecular Physics, PAS, Poznań, Poland, (3) INFM-CNR "Coherentia" and Dipartimento di Scienze Fisiche, Universitá di Napoli Federico II, (4) Paul Drude Institute, Berlin, Germany, (5) Johannes Kepler Universitat, Linz, Austria, (6) Institute of Theoretical Physics, University of Warsaw, Poland.
bulka@ifmpan.poznan.pl Project SPINTRA	The interesting transport characteristics of three-terminal ballistic junctions (TBJs) are recently investigated due to possible applications of such devices in electronic and spintronic circuits. In this work we report on theoretical studies, fabrication and low temperature transport measurements of T-shaped tree-terminal devices, based on a high mobility 2D electron gas. Modeling shows the Wigner singularities in the source-drain conductance, when a new conduction channel opens to transport in a side terminal [1]. The shape of the singularity can be changed by tuning the gate voltages. The threshold effect can be also seen in voltage changes measured in the floating electrode for different source-drain bias in linear and non-linear regime. Experimental results, obtained for GaAs/AlGaAs devices, indicate that apart from ballistic transport, in the central part of the junction quasibound states are formed and a certain asymmetry is present in the cavity region. Measurements also show bend resistance for asymmetric TBJs, which is in agreement with our modeling. Moreover, the non-linear transport was studied in the typical for TBJs, the so-called <i>push-pull</i> bias regime, when equal but opposite in sign <i>dc</i> voltages are simultaneously applied to the input terminals. For the first time we have shown that output voltage can assume either negative or positive values as a function of Fermi energy. This behavior was previously predicted theoretically for Y -shaped device [2] and our calculations (for symmetric and non-symmetric T -junction) show that for such geometry it is in fact the bend resistance effect, which is responsible for a positive value of the output voltage.

Chris Van	
Haesendonck	Electronic and magnetic properties of self-organized Co islands on Au(111)
Presentation type :	K. Schouteden (1), E. Lijnen (2), D. A. Muzychenko (3), A. Ceulemans (2), L. F. Chibotaru (2), P. Lievens (1), and C. Van Haesendonck (1)
	 Laboratory of Solid-State Physics and Magnetism, K.U.Leuven, Celestijnenlaan 200D, BE-3001 Leuven Division of Quantum Chemistry, K.U.Leuven, Celestijnenlaan
Name of University (Institute) : K.U.Leuven Department : Laboratory of Solid-State Physics and Magnetism	 (2) Division of Qoarnorn Chemisity, R.O.Leoven, Celesinghemidan 200D, BE-3001 Leuven (3) Faculty of Physics, Moscow State University, 119992 Moscow, Russia
Aggnetism Zip code : BE-3001 Leuven Country : Belgium Tel: +32-16-327501 Fax: +32-16-327983 Email: Chris.VanHaesendonck@f ys.kuleuven.be FONE Project: SPINTRA	Magnetic Co islands of only a few nanometer in size were grown by atomic deposition on atomically flat Au(111) films. The morphologic, electronic and magnetic properties of the islands were studied <i>in situ</i> by scanning tunneling microscopy (STM) and spectroscopy (STS), including spin-polarized STS, under ultra-high vacuum conditions and at low temperatures. At low coverages, Co islands self-organize in arrays of mono- and bilayer nanoscale hexagonal structures, a process induced by the Au(111) herringbone reconstruction [1, 2]. By means of mapping of the local density of states (LDOS) with lock-in detection, electron standing wave patterns are resolved on top of the atomically flat Co islands. The surface state electrons are observed to be strongly confined laterally inside the Co nanosized islands, with their wavefunctions reflecting the symmetry of the islands [3, 4]. The standing wave patterns can be fitted to the calculated wave functions for a single electron in a box having the corresponding island symmetry [5]. The observed standing wave patterns are identified either as individual eigenstates or as a mixture of two or more energetically close-lying eigenstates of the cobalt island. The small size of the Co islands under study (down to 9 nm ²) has lead to a strong discretization of the energy separations between the eigenstates on the order of 100 meV. Complementary to the standard STS experiments, state-of-the- art spin-resolved STS experiments, using a Cr coated STM tip with a perpendicularly oriented magnetization [6], revealed that the Co islands exhibit a net magnetization [6], revealed that the Co sistands exhibit a net magnetization perpendicular to the substrate surface due to the presence of spin-polarized <i>d</i> -states. A random distribution of islands with either upward or downward pointing magnetization orientation with island size or island height, as expected for non-interacting magnetic particles on a nonmagnetic substrate. The maxima and minima observed in the STS spectra qualitatively agr
	[1] B. Voigtländer, G. Meyer, and N.M. Amer, Phys. Rev. B 44,

10354
(1991)
[2] J. Meyer and R. Behm, Surf. Sci. 322, L275 (1995)
[3] J. Li, WD. Schneider, R. Berndt, and S. Crampin, Phys. Rev.
Lett.
80, 3332 (1998)
[4] M. Rastei, J. Bucher, P. Ignatiev, V. Stepanyuk, and P. Bruno,
Phys.
Rev. B 75, 045436 (2007)
[5] S. Crampin, M. Nekovee, and J. Inglesfield, Phys. Rev. B 51,
7318
(1995)
[6] M. Bode, M. Dreyer, M. Getzlaff, M. Kleiber, A. Wadas, and R. Wiesendanger, J. Phys.: Condens. Matter 11, 9387 (1999)

Farkhad Aliev	
	Magnetization dynamics and noise in spitronic
Presentation type : Oral	devices Farkhad G. Aliev*
Universidad Autonoma de Madrid Department: Dpto Fisica de la Materia	Dpto. Física Materia Condensada, C-III and Instituto " Nicolas Cabrera" de Ciencia de Materiales, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
Condensada, C-III Zip code : 28049 Cantoblanco-Madrid Country : SPAIN	In this talk I will review our very recent experiments on magnetization dynamics, electron transport and noise in magnetic nanostructures partially supported by ESF-FONE [1-7]. I will separately resume the research collaboration within SPINTA collaborative project [5-7]. Knowledge of dynamic magnetic
Tel: 3491-4974660 Fax: 3491-4973961 Email: farlhad.aliev[#]uam.es	properties may provide essentially new, in respect to DC measurements, information about physical processes in magnetic nanostructures. I will present measurement of complex dynamic response in arrays of Py magnetic dots and magnetic tunnel junctions at frequencies up to 8.5 GHz and temperatures
FONE Project: 05-FONE-FP-004/ Spin dependent transport	understanding of magnetotransport and low frequency noise in Fe/Cr magnetic multilayers [5] and magnetic tunnel junctions with and without nanostructuring of the barrier [6,7].
ana electronic correlations in nanostructures (SPINTRA)	(*) In collaboration with D.Herranz, A.Awad, R.Guerrero, J.Sierra, V.V.Pryadun, R.Villar, A. Levanyuk, F.Greullet, C.Tiusan, M. Hehn, S.Russek, G.Kakazei, V.Metlushko, K.Guslienko, J.Barnas, V.Dugaev, C.van Haesendonck, R. Duine
	REFERENCES
	 [1] F.G. Aliev, et al., Phys. Rev. B 79, 174433 (2009) [2] J. F. Sierra, et al., Appl. Phys. Lett., 93, 172510, (2008). [3] L.E. Sierra, et al., Appl. Phys. Lett. 94, 012506 (2009)
	 [4] F.G.Aliev, et al., Phys.Rev.Lett., 102, 035503 (2009) [5] D.Herranz, et al., Phys. Rev. B 79, 134423 (2009). [6] R.Guerrero, submitted to Phys.Rev. (B)
	[7] D. Herranz, in preparation.
	Support from Spanish-French Integrated Action project (HF2006- 0039), Spanish MEC (MAT2006-07196), Consolider "Molecula Nanoscuence" and Comunidad de Madrid (S-505/MAT0194) is gratefully acknowledged. This work, as a part of the European Science Foundation EUROCORES Programme 05-FONE-FP-010- SPINTRA, was also supported by funds from the Spanish MEC (MAT2006-28183-E) and the EC Sixth Framework Programme, under Contract No. ERAS-CT-2003-980409.

Arturo Tagliacozzo	Competition between Rashba spin-orbit coupling
	the Kondo correlations of a quantum dot with four
Presentation type :	electrons
Oral	P.Lucignano(2), A.Tagliacozzo(1,2), B. R. Bulka(3)
	(1) Universita'di Napoli "Federico II Monte S.Angelo, via Cintia, 80125
Università "Federico II" di	Napoli, Italy. (2) CNR-INFM Coherentia, via Cintia, 80125 Napoli,
Napoli Department : Scienze Fisiche 80125 Napoli	 (3) Institute of Molecular Physics, Polish Academy of Sciences, ul. M. Smoluchowskiego 17, 60-179 Poznań, Poland
Italy	Gate-controlled semiconductor Quantum Dots (QDs) enable
Tel: +39081676832	manipulation of the quantum states down to the single
Email: : arturo@na.infn.it	quantum coherent properties of spin degrees of freedom in
	QDs with tew electrons. The Coulomb interaction is usually strong with respect to the single particle energy spacing.
05-FONE-FP-004/ Spin dependent transport and electronic correlations in nanostructures (SPINTRA)	therefore exact diagonalization calculations are needed. By attaching leads to the QD, transport affects its local magnetic properties and, vice versa, its magnetic properties inprint the current response with a zero bias anomaly due to Kondo correlations. The Rashba spin-orbit interaction, by acting on the dot electrons via a top gate, provides an attractive tool for tuning the conductance in the device. We have considered a QD with four electrons at zero magnetic field which is known to be in a triplet spin state, due to Hund's rule. Two of the four electrons are frozen in a singlet state. The Kondo screening
	competes with the Hund's ferromagnetic exchange interaction if the coupling to the leads is strong enough or temperature is low enough. On the other hand, the Hund's ferromagnetic exchange interaction is weakened by the Rashba term, as the latter does not conserve the dot spin, but just the total angular momentum component orthogonal to the dot J_z . Thus, the magnetic moment of the impurity is influenced by the coupling to the leads, which provides the mixing of the dot states belonging to $J_z = -1,0,1$.
	the QD, can emerge, as we show on Anderson-like models by using a Numerical Renormalization Group approach to the linear quantum transport, which was succesful in realistic metal nanowires with an impurity.
	[1]. P.Lucignano, B.Jouault, A. Tagliacozzo, Phys. Rev. B75, 153310 (2007).
	[2]. B.R. Bulka and A.Tagliacozzo Phys. Rev. B 79, 075436 (2009)
	 [3]. P. Lucignano, G. E. Santoro, M. Fabrizio, and E. Tosatti, Phys. Rev. B 78, 155418 (2008) [4]. P.Lucignano, B.Jouault, A.Tagliacozzo and B.L. Altshuler, Phys.Rev. B 71 121310(R)(2005)
	$D / 1, 121310(\mathbf{R})(2003).$

Vit Novak	GaMnAs: model material for spintronics
Presentation type : Oral	Cukr (1), Tomas Jungwirth (1), Sam Owen (3), Joerg Wunderlich (3), Richard Campion (4), Bryan Gallagher (4)
Institute of Physics AS CR Cukrovarnicka 10 162 53 Praha Czech Republic	(1) Institute of Physic AS CR, Prague, Czech Republic, (2) Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic, (3) Hitachi Laboratory Cambridge, UK, (4) University of Nottingham, UK
Tel: +420 220318471 Email: vit.novak@fzu.cz	GaMnAs has been the most intensely studied example of diluted magnetic semiconductors in the recent years. As a well established model material It has helped to better
	understand the basic physics related to ferromagnetism in semiconductors, and it allowed to verify the viability of various spintronic application concepts.
Spin-dependent transport and electronic correlations in nanostructures (SPINTRA)	In this contribution we survey the technological achievements which have led to the high critical temperatures of the ferromagnetic transition. Further, based on a series of optimally grown and annealed samples we report a systematic study of the transition from a low-doped diamagnetic semiconductor to a heavily doped metal-like ferromagnetic semiconductor. Finally, we demonstrate an all- semiconductor device with gated ferromagnetic layer, exhibiting a controllable anisotropic magnetoresistance.

Maxim Tsoi	Spintronics: from ferromagnets to antiferromagnets
Presentation type : Invited	Physics Department, The University of Texas at Austin, USA
The University of Texas at Austin Department of Physics Zip code : 78712 Country : USA Tel: +1 (512) 232-7962 Fax: +1 (512) 471-9637	Spintronics is built on a complementary set of phenomena in which the magnetic configuration of a system influences its transport properties and vice versa. In ferromagnetic (F) systems these interconnections are exemplified by Giant Magnetoresistance (GMR) – where the system's resistance depends on the relative orientation of magnetic moments in constituent F parts [1, 2], and Spin Transfer Torque (STT) – in which a large electrical current density j can perturb the system's magnetic state [3-5].
FONE Project: invited	Recently, corresponding effects were proposed [6] to occur in antiferromagnetic (AFM) systems where F components are replaced by AFMs. First, it was predicted that resistance of an AFM spin valve – where two AFM layers are separated by a nonmagnetic (N) spacer – could depend upon the relative orientations of magnetic moments in the two AFM layers (antiferromagnetic GMR). Second, injection of a strong enough j into AFM was predicted to affect its magnetic state (antiferromagnetic STT).
	In this talk I will focus on two experiments which highlight the interconnections between magnetic state and transport in (i) F and (ii) AFMsystems:
	(i) It is well known that STT associated with an electric current traversing a magnetic domain wall can drive it into motion [7]. The inverse effect, in which an emf is induced by a moving domain wall, has also been predicted [8-10]. Here I will describe the first experimental observation of an emf induced in a Permalloy nanowire by a field-driven domain wall [11]. Over a range of driving fields, we detect a small voltage generated during the motion of a single domain wall monitored by high-bandwidth scanning Kerr polarimetry. Our observations confirm the theoretical predictions, from which information about the wall motion can be extracted.
	(ii) I will also discuss our experimental search for the new AFM effects – antiferromagnetic GMR and STT – which may potentially lead to a new all-antiferromagnetic spintronics where antiferromagnets are used in place of ferromagnets. In particular I will focus on our experiments with exchange-biased spin valves [12] where extreme current densities were found to affect the exchange bias at F/AFM interface. We find that, depending on the polarity of the electrical current flowing across F/AFM interface the strength of the exchange bias can either increase or decrease. As exchange bias is known to be associated with interfacial AFM magnetic moments, our observation can be taken as the first evidence of STT effect in AFM materials.
	In collaboration with (i) S. A. Yang, G. S. D. Beach, C. Knutson, D. Xiao, Q. Niu, J. L. Erskine, and with (ii) Z. Wei, A. Sharma, J. Basset, A. S. Nunez, P. M. Haney, R. A. Duine, J. Bass, and A. H.

MacDonald. Supported in part by NSF, DoE, and the Welch Foundation.
[1] M. N. Baibich et al., Phys. Rev. Lett. 61, 2472 (1988). [2] G. Binasch et al., Phys. Rev. B 39, 4828 (1989).
[3] J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996). [4] L. Berger, J. Appl. Phys. 81, 4880 (1997).
[5] M. Tsoi et al., Phys. Rev. Lett. 80, 4281 (1998).
[6] A. S. Nunez et al., Phys. Rev. B 73, 214426 (2006). [7] G. S. D. Beach et al., Phys. Rev. Lett. 97, 057203 (2006).
[8] L. Berger, Phys. Rev. B 33, 1572 (1986).
[9] S. E. Barnes et al., Appl. Phys. Lett. 89, 122507 (2006).
[10] R. A. Duine, Phys. Rev. B 77, 014409 (2008).
[11] S. Yang et al., Phys. Rev. Lett. 102, 067201 (2009).
[12] Z. Wei et al., Phys. Rev. Lett. 98, 116603 (2007).

Michel Viret	Domain wall resistance and spin torque in constrictions down to atomic contacts
Presentation type : Invited	CEA Saclay, DSM/IRAMIS/SPEC, Gif sur Yvette, France.
CEA Saclay DSM/IRAMIS/SPEC 91191 Gif sur Yvette France Tel: (33) 1 69 08 72 17 Fax: (33) 1 69 08 87 86	In bulk materials, domain walls (DWs) contribute only a tiny amount to the electrical resistance because the magnetisation rotates very smoothly over 'long' lengthscales (typically several tens of nanometers). When a strong current is driven through the DWs, the flux of polarised carriers applies a pressure which tends to push the walls. However, this pressure is also rather small because most of the torque applied on the wall is in the wrong direction to push efficiently.
Email: michel.viret@cea.fr FONE Project: 05-FONE-FP-004 / Domain Walls and Spin-Polarised Currents (SPINCURRENT)	The situation would be very different if the DWs were very thin. In that case, both their resistance and current induced pressure would be large. The DWs could then be used as topological solitons easily measurable (through their resistance) and movable (with the current induced pressure). They could be the basis for efficient bits of information in magnetic memories.
	An interesting way of making DWs thinner is by using nanometer sized constrictions where the DW width are expected to scale with the constrictions diameter. I will present here our results in break junctions where a controlable breaking of a narrow neck allows to define constrictions of any size down to a single atom. In this regime, the nature of conductance changes and local magnetism is also affected by the reduced dimensionality. The variation of DW resistance, anisotropic magneto-resistance (AMR) and spin torque effects will be presented and discussed in the light of ab-initio and tight-binding calculations.

Phillip Eib	Vortex domain wall dynamics in NiFe nanowires
Presentation type : Oral	C. Zinoni, P. Eib, A. Vanhaverbeke, G. Salis and R.Allenspach(1)
IBM Research CH-8803	(1) IBM Research, Zurich Research Laboratory, Säumerstr. 4, CH-8803 Rüschlikon, Switzerland
Switzerland Tel: Fax: Email: czi@zurich.ibm.com	Current-induced propagation of single domain walls (DW) in NiFe nanowires plays a key role in the recently proposed information storage devices [1]. Crucial to the development of a practical technology is the understanding of the role of joule heating in the nanowire due to the high current densities necessary to move DWs.
Project 05-FONE-FP-004 /Domain Walls and Spin-Polarised Currents (SPINCURRENT)	We have built and characterized a time resolved magneto- optical Kerr effect setup similar to the one reported in Ref. 2 that uses a combination of RF magnetic field pulses and current pulses with sub-nanosecond risetime to propagate and detect the DW motion. The setup is also used in a time- resolved reflectometry configuration to measure the evolution of the temperature of the nanowire on a nanosecond time scale with a spatial resolution of 3 μ m. Combining this measurement technique with careful sample design, multiple effects of the current on DW motion can be discerned, namely the temperature rise and the induced torques.
	The high sensitivity of the setup allows recording of the partial magnetization reversal of the wire under the laser spot. DW nucleation is achieved using the Oersted field generated by a current pulse traveling in a conductor bridging over the wire. The width of the bridge and that of the magnetic wire are both equal to 1 µm. Surprisingly DW propagation was observed to continue for time intervals longer than the current pulse duration in magnetic fields as small as 0.3 Oe. The coercive field of the wire was measured to be 4 Oe. This low propagation field after the nucleation current pulse is attributed to Joule heating in the bridge and subsequent heat diffusion into the magnetic nanowire on the nanosecond time scale. We will report on the progress towards studying the dynamics of DW propagation in nanowires with this setup.
	[1] S. S. P. Parkin et al., Science 320, 190 (2008). [2] C. Nistor et al., Rev. Sci. Instrum. 77, 103901 (2006).

Igor Kuzmenko	Canted magnetization texture in ferromagnetic tunnel junctions
Presentation type : Oral	Igor Kuzmenko
Presentation type : Oral Lancaster University Department: Physics LA1 4YB United Kingdom Tel: (+44) (0)1524-593291 Fax: (+44) (0)1524 844037 Email: i.kuzmenko@lancaster.ac.uk Project 05-FONE-FP-004 / Domain Walls and Spin-Polarised Currents (SPINCURRENT)	Igor Kuzmenko Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK The possibility of the formation of inhomogeneous magnetization texture in the vicinity of a highly transparent tunnel junction caused by ferromagnetic coupling of magnetic moments on opposite sides of the junction is investigated. As an example, it is considered a device consisting of a tunnel junction between two easy-axis ferromagnets magnetically biased at the ends. It is found that a canted magnetization state can form if the ferromagnetic tunneling coupling, \$t'\$, exceeds some critical value \$t_0\$ determined by the interplay between crystalline anisotropy and magnetization rigidity in the ferromagnet. A tunnel junction with \$t' <t_0\$ be<br="" can="">viewed as an atomically sharp magnetic domain wall,</t_0\$>
	whereas the increase in the junction transparency above \$t_0\$ gradually transforms it into a broad texture typical for a domain wall in a bulk ferromagnetic material. For \$t'>t_0\$, the evolution of the texture upon application of an external magnetic field is considered and a parametric diagram for distinct magnetization regimes is constructed. When the magnetic field exceeds some critical value, \$B_0\$, the domain wall is pushed away toward the magnetically biased end of the ferromagnetic metal. When a magnetic field is swept back and its sign changes, the domain wall returns back to the tunnel junction. The resulting hysteresis in the magnetization state of the device leads to a hysteresis loop in its magnetoresistance (MR), which is analyzed, taking into account the formation of the texture near the tunnel junction.

Serban Lepadatu	Resonant Domain Wall Movement in Pinning Potentials
Presentation type : Oral	S. Lepadatu ¹ , O. Wessely ^{2,7} , A. Vanhaverbeke ³ , R. Allenspach ³ , A. Potenza ⁴ , H. Marchetto ^{4,5} , T.R. Charlton ⁶ , S. Langridge ⁶ , S.S. Dhesi ⁴ , C.H. Marrows ¹
The University of Leeds School of Physics and Astronomy LS2 9JT UK Tel.: +0(44) 113 3436646 Email: S.Lepadatu@leeds.ac.uk FONE Project: SPINCURRENT Domain Walls and Spin- Polarised Currents	 ¹ School of Physics and Astronomy, E.C. Stoner Laboratory, University of Leeds, Leeds LS2 9JT, United Kingdom ² Department of Mathematics, Imperial College, London SW7 ² BZ, United Kingdom ³ IBM Research, Zurich Research Laboratory, CH-8803 Rüschlikon, Switzerland ⁴ Diamond Light Source, Chilton, Didcot OX11 0DE, United Kingdom ⁵ Fritz-Haber-Institute der Max-Planck-Gesellschaft, Faradayweg ⁴ -6, 14195 Berlin, Germany ⁶ ISIS, STFC Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, United Kingdom ⁷ Department of Mathematics, City University, London EC1V 0HB, United Kingdom
	Linear and parabolic notches provide a pinning potential and hence give rise to a restoring force acting on a domain wall trapped at the notch. The structures under study are defined by e-beam lithography with 1µm arm width, 100nm constriction width, 20nm NiFe thickness and various notch profiles, including linear pinning potentials labeled L1 through to L5 and parabolic pinning potentials labeled P1 through to P5 in order of increasing steepness (see Ref. [1] for details). By varying the pinning potential profile the restoring force is changed. The domain wall pinning behavior is investigated using spin-SEM and PEEM imaging and we find that the pinning position is dependent on the profile of the notch. Thus for the pinning profiles L1 to L3 and P1 to P5 we have a domain wall pinned at the centre of the notch, whilst for the pinning profiles L4 and L5 we have a domain wall pinned towards one side. Using a vector network analyzer the resonance frequency is measured at zero magnetic field as a function of pinning profile, hence restoring force, and current density. We observe a resonance peak in the reflection data only when a domain wall is trapped at the centre of the notch, arising due to the amplified movement of the domain wall at the resonance frequency. We find that at a fixed current density the resonance frequency increases with the steepness of the pinning profile. Moreover, for the linear pinning profiles L1 through to L3, the resonance frequency decreases linearly with increasing current density. Using a 1D model of domain wall movement where the restoring force is determined by the spatial derivative of the cross sectional area, the non-harmonic behaviour of domain wall oscillation in the linear pinning profiles is explained by noting that for a linear notch the restoring force is not proportional to the DW displacement from equilibrium. On the other hand for the parabolic pinning potentials, where the restoring force is proportional to the domain wall displacement from equilibrium, we obtain a near

movement [2], where the resonance frequency is nearly independent of the excitation current density.
References
[1] S. Lepadatu, A. Vanhaverbeke, D. Atkinson, R. Allenspach and C. H. Marrows, Phys. Rev. Lett. 102, 127203 (2009)
[2] E. Saitoh et al., Nature 432, 203 (2004)

Michael Coey	Domain wall noise in nanostructured hard magnets
	Zhu Diao, E. R. Nowak*, G Feng and J. M. D. Coey
Presentation type : Oral	School of Physics and CRANN, Trinity College, Dublin 2, Ireland
Name of University Trinity College Dublin Department :Physics Zip code :Dublin 2 Country : Ireland Tel: 353 1 8961470 Fax: 353 1 6711759 Email: jcoey@tcd.ie FONE Project: Name of the Project 05-FONE-FP-004 / Domain Walls and Spin-Polarised Currents (SPINCURRENT)	The anomalous Hall effect of wires patterned from $(Co_{20}Pt_{10}/Pt)_n$ multilayers, with $10 \le n \le 50$ allows determination of the magnetization process in a small volume of material from measurememnts of the transverse electrical resistivity. The domain structures are determined by atomic force microscopy, and maze domains are observied with a donain width od $100 - 200$ nm. The pink, $1/f$ noise appears in samples with quality factor Q < 1 at points on the hystersis loop where the magnetization reverses continuously. (Q is defined as $2K/\mu_0Ms^2$) The magnetic noise is associated with reversible excursions of segments of domain wall of approximate length 100 nm. The fluctuating volume is readily deduced from time sequences, as the noise associated with the anomalous Hall voltage is $1 - 2$ orders of magnitude greater than the Johnson noise floor associated with the resistance of the lithographically-patterned Hall bars. This noise is quite different from the Barkhausen noise close to the coercive field, where distinct jumps are observed, which correspond to the abrupt reversal of a significant fraction of the sensitive volume.

Friday September 11

S. Jejurikar and M. De Souza	Carbon based Electronics: A Perspective from Theory and Experiment
Two presentations each of 30 mins.	M. M. De Souza, Premlal B. Pillai, D. Casterman, S. Jejurikar and O. Petrenko.
Presentation type :	University of Sheffield.
	We present an update on our progress on (i) The extraction of key parameters (bandgap, effective mass) relevant to transport mechanisms in CNTFETs using a combination of experiment and theory and (ii) Exploration of the properties of
University of Sheffield Department : Flectrical	graphene on epitaxied SiC.
and Electronic Engineering S13JD United Kingdom Tel: 44-114-2225167 Fax: 0114-2225143 Email: m.desouza@sheffield.ac.uk Project DEWINT	Results: (I) CNTFETs: Transport in CNTFETs is limited by the Schottky Barrier Height at the contact. For small diameters, the impact of hybridization on the Schottky Barrier Height (SBH) at a metal/nanotube contact is a deviation from the conventional "1/d" rule, where "d" is the diameter of the CNT. Hybridization causes a difference between the effective mass of electrons and holes highlighting limitations of the tight binding approximation in modeling CNT bandstructure. A strong family pattern in the effective mass is obtained. Corrections to the bandgaps of CNTs and graphene nano-ribbons for large supercells, now calculated within the GW framework [2] using a novel Wannier Function Approach proposed by Umari et al [3] allow even more accurate estimates of the bandgap and thereby the Schottky Barrier Height.
	An analysis of measured electrical characteristics of CNTFETs fabricated by partners at Cambridge will be presented. In collaboration with DuPont USA, Sheffield are also exploring FETs using chirality separated DNA-wrapped CNTs. Progress on this front will be reported at the meeting.
	(II) Graphene: The effects of gold deposition on monolayer graphene epitaxied on SiC (0001) substrate were examined via Scanning Tunneling Microscopy (STM) in collaboration with CNRS Mulhouse. Two types of surfaces with distinctive topography were demonstrated, (i) Intercalated gold clusters having no interaction with graphene and (ii) 13 X 13-G reconstruction attributed to a Moiré pattern arising from the intercalation of one monolayer of gold between a monolayer graphene and the underlying SiC substrate. This surface also displays a $2\sqrt{3} \times 2\sqrt{3}R30$ -Au (111) surface reconstruction interpreted as surface corrugation. The STS curve shows a possible hole-doping effect in the latter case. Theoretical models examined via Density Functional Theory in support of experiment will be presented [5].
	Conclusion: Benefiting from the progress in CNT separation techniques worldwide allows the exploration of a methodology to link CNT structure and its electrical properties. Novel

nanostructures demonstrated.	of	graphene	on	epitaxied	SiC	are
Acknowledgeme SISSA, Italy; S. T Vonau, D. Aubel DuPont USA. We visits for Mr. Pre HPCX-Europa for	ents: aioli, l, L. Si e thar mlal r O. P	We thank ex University of mon all from Ik the ESF an Pillai (Sheffie etrenko (Shef	ternal Trent CNRS d HPC ld) to ffield)	collaborato o, Italy; M. 6 Mulhouse, X Europa for Mulhouse F to Trieste, Ita	rs P. U Cranne France r exche rance, Ily.	mari, ey, F. and ange and
 [1] D. Castermor Milne "Role of hy carbon nanotul (2009), also sele virtual journal of [2] S.Taioli, P. Un of extended gro submitted to Phy meeting Electro nanostructures, [3]. P. Umari, G. (2009). [4] B. Premlal, N M. M. De Souzo underneath a g Scanning Tunne Spectroscopy", 	in, M. ybridi be fie ected nari c apher ysica pnic P Kirchl Stenu I. Crc subn subn	M. De Souzo zation on the eld effect trar by the AIP fro oscale science and M. M. De ne nanomate Status Solidi ; roperties of n berg Austria, at, and S. Bar inney, F. Vor L. Simon, " ene monola microscopy (itted to APL.	a, A. Tc Scho nsistors or Mar e and Souzc erials fr Prese novel r 2009. oni, Pt nau, D Surfac yer or STM) c	ahraoui, C. D ttky barrier h ", Phys Rev E rch 16, 2009 I technology a, "Electronic om GW calc nted at the I naterials mo hys. Rev. B 79 c. Aubel, D. 6 ce Intercalat h SiC (0001) and Scannin	urkan, eight c 3 79,12. issue o : Prope culatior (irchbe lecular 2,20110 Castern ion of studie g Tunn	W.I. of 5407 f the erties ns", erg 04 man, gold d by eling
USJ.D Casterman Vonau, D. Aube effect of epitaxi monolayer", NT2	1, P. B I, L.Sir al grc 2009 E	. Filiai, M.M. L mon <i>"Ab initi</i> a phene via in Beijing.	o inves itercal	stigation of t ation of a G	ney, F. he dop old	bing

Shu- Pei Oei	CNTs vs. SiNWs for Future Electronics
	S.P. Oei ¹ , A.Tahraoui ¹ , A. Colli ² , Y. Zhang ¹ , S. Hofmann ¹ , S.
Presentation type :	Jejurikar ³ , M. De Souza ³ , W.I. Milne ¹
Oral	1. Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3
Cambridge University Department of Electrical Engineering CB3 0FA UK Tel: 01223748368 Fax:	 OFA, UK. 2. Nokia Research Centre Cambridge U.K., c/o Nanoscience Centre, University of Cambridge, Cambridge CB3 OFF, UK. 3. University of Sheffield, Department of Electronic & Electrical Engineering, Mappin Street, Sheffield, S1 3JD, UK.
Email: spo25@cam.ac.uk	Since their identification in 1991 by lijima ¹ carbon nanotubes (CNTs) have been touted for use in next generation devices and circuits, including transistors, diodes, inverters, transparent
FONE Project: Name of the Project Device Electronics Based on NanoWires and NanoTubes(DEWINT)	contacts, vias and interconnects etc, but because of problems with chirality, diameter and positional control they have yet to be utilized. On the other hand one-dimensional silicon nanowires (SiNWs) ² may be more attractive, due to the central role of silicon in the semiconductor industry. At the nanometer scale Si can become a direct band gap semiconductor due to quantum confinement. This makes SiNWs also very promising for optoelectronics. Unlike nanotubes, which naturally occur as a mixture of metals and semi-conductors, SiNWs are always semiconductors and they can be doped during or after deposition. Of course whether a "bottom up" approach can supersede standard "bottom down" technology is still a moot point.
	In this presentation, I will describe the growth of CNTs and SiNWs using chemical vapour deposition (CVD) techniques with respect to controlling their yield, placement, crystallinity and in the case of CNTs, their chirality. The fabrication of bottom and top- gate transistors will be reported. In addition, I will describe the use of Oxide- Assisted Growth (OAG) ³ for the SiNW depositions which allows for the fabrication of top-gated SiNW transistors in single- step patterning ⁴ via dose-modulated e-beam lithography using a naturally formed 10–15 nm SiO ₂ shell as the gate dielectric.
	 [1] S.Ijima Nature 354, 56, 1991 [2] S. Hofmann, et al., <i>J. Appl. Phys.</i> 94 (2003) 6005. [3] A. Colli et al, J. Appl. Phys. 102, 034302 (2007) [4] A. Colli et al, ACS Nano, Article ASAP

Hans Kosina	
	Transport modeling for Nanowires and Nanotubes
Presentation type : Oral	Quasi-onedimensional nanostructures have attracted much interest
TU Wien, Institute for Microelectronics	as they are recognized as promising building blocks for future nanoelectronic devices. A model for electronic transport in these
Gusshausstrasse 27-29/E360 Austria	structures has to address various physical effects: Quantum mechanical confinement, tunneling and
phone: +4315880136013 Fax: +4315880136099 email:	the semiconductor region to the contacts (open systems), non- equilibrium
kosina@iue.tuwien.ac.at	conditions (voltage applied to the contacts, irradiation), electron-phonon scattering and electron-photon interaction. The
FONE Project: DEWINT	non-equilibrium Green's function (NEGF) technique has proven well suited
	for the numerical study of such problems. A device simulator based on
	the NEGF method and a tight-binding model for the band structure has
	been developed. We present a numerical analysis of the thermoelectric
	properties of scaled silicon nanowires, and of the opto- electronic
	response of CNT-based photodetectors.

Saturday September 12

Yashar Komijani	0.7-feature in p-GaAs Quantum Point Contacts Yashar Komijani(1), Miklos Csontos(1), Ivan Shorubalko(1), Thomas Ihn(1), Klaus Ensslin(1), Dirk Reuter(2) and Andreas D. Wieck(2)
Presentation type : Oral	(1) Solid State Physics Laboratory, ETH Hönggerberg, CH-8093 Zürich, Switzerland. (2)Angewandte Festkörperphysik, Ruhr- Universität Bochum, 44780 Bochum, Germany
ETH Zurich Solid State Physics Laboratory 8093 Zurich Switzerland Tel : +41 44 633 22 45 Fax: +41 44 633 11 46 Email: komijani@phys.ethz.ch	Conductance of narrow constrictions in two-dimensional electron/hole systems is quantized in units of 2e ² /h. This is a universal effect which has been widely studied and well understood. Besides quantization in units of 2e ² /h, electrical conductance spectroscopy measurements carried out on various p-type quantum point contacts (QPCs) revealed a rich variety of 0.7-like features, an onset of strong, spin-dependent electron-electron correlations. As displayed in the figure, an additional plateau at 0.7×2e ² /h emerges at higher temperature which gradually disappears with decreasing temperature on the contrary to standard conductance plateaus.
Project SpinCo (group of Prof. Ensslin)	1.25
Although the above model explains many experimental results successfully, the presence of the quasi-bound state has not yet been proven experimentally. Here we report results of low temperature magnetotransport measurements on p-GaAs QPCs which provide experimental evidence for the formation of a quasi- localized state in the QPC.	
--	
The experimentally observed 0.7 plateaus in our 2DHGs have been extensively studied as a function of the gate configuration, QPC bias, in-plane- and perpendicular magnetic field as well as temperature. By asymmetric in-plane gate biases we can apply an in-plane transverse electric field to the QPC. This results in the lateral displacement of the QPC channel, thus the generic 0.7- plateau can be distinguished from resonances arising from interactions with impurity states or with random imperfections of the background potential. Bias spectroscopy measurements at finite magnetic field reveal a considerable in-plane – out-of-plane anisotropy of the hole g-factor as expected from two-dimensional spin 3/2 systems.	
 Y. Meir, Journal of Applied Physics: Condensed Matter 20, 164208 (2008). 	

Stefano Chesi	Quantum Hall ferromagnetic states and spin-orbit interactions in the fractional regime
Presentation type : Oral	Stefano Chesi and Daniel Loss
Presentation type : Oral University of Basel Department : Physics Zip code : CH-4056 Country : Switzerland Tel: +41 61 267 3695 Fax: +41 61 267 1349 Email: stefano.chesi@unibas.ch FONE Project: Name of the Project (example : 05-FONE-FP-004 / Domain Walls and Spin- Polarised Currents (SPINCURRENT)	Department of Physics, University of Basel, CH-4056 Basel, Switzerland The competition between the Zeeman energy and the Rashba and Dresselhaus spin-orbit couplings is studied for fractional quantum Hall states. A transition of the spin-polarization direction is predicted to occur at a small value of the Zeeman energy. For a given fractional state, the phenomenon can be accurately described in the perturbative limit of high magnetic fields. We consider the Laughlin wavefunctions and the Pfaffian state as specific examples and show that this phenomenon allows one to obtain valuable information about the nature of the correlated ground-state, and in particular about its pair-correlation function. We discuss indications of non-analytic features around the fractional states and include significant effects of the nuclear bath polarization in the relevant regime of temperatures and magnetic fields.
	[1] S. Chesi and D. Loss, Phys. Rev. Lett. 101 , 146803 (2008)

Mircea Trif	Relaxation of hole spins in quantum dots via two-phonon processes
Presentation type :	Mircea Trif (1), Pascal Simon (2), Daniel Loss (1)
Orai	(1)Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland (2) Laboratoire de Physique des Solides, CNRS UMR-8502
University of Basel Department : of Physics	University Paris Sud, 91405 Orsay Cedex, France
Zip code :4056	We investigate theoretically spin relaxation in heavy hole
Country :Switzerland Tel: +41 61 267 36 56	external magnetic fields. We demonstrate that two-phonon
Fax: Email: Mircea.Trif@unibas.ch	are experimentally relevant and provide an explanation for the
FONE Project:	recently observed saturation of the spin relaxation rate in heavy hole
	quantum dots with vanishing magnetic fields. We propose further
	experiments to identify the relevant spin relaxation mechanisms in low magnetic fields.
	References
	[1] Mircea Trif, <u>Pascal Simon, Daniel Loss, arXiv:0902.2457</u>

Silvano De Franceschi	Spin-dependent transport in bottom-up semiconductor nanostructures G. Katsaros (1), P. Spathis (1), M. Stoffel (2), F. Fournel (1), M.
Presentation type : Oral	Monglilo (1), A. Rastelli (2), O. G. Schmidt (2), E. Storace (3), J. Weis (3), K. von Klitzing (3), F. Jabeen (4), S. Rubini (4), F. Martelli (4), F. Capotondi (4), S. De Franceschi (1,4)
- CNR-INFM TASC - CEA Grenoble	(1) CEA Grenoble, 17 rue des Martyrs, F-38054 Grenoble, France (2) IEW Drosdon, Holmholtzstrasso 20, D. 01048 Drosdon
Zip code : 38054	(z) ir w Dresden, Heimnonzsirasse 20, D-01069 Dresden, Germany
Country : France Tel: +33 4 3878 5480	(3) MPI Stuttgart, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
Fax: +33 4 3878 5096 Email: silvano.defranceschi@cea.fr	(4) CNR-INFM TASC, S.S. 14 Km 163.5, I-34012 Basovizza (TS), Italy
FONE Project: Spin-coherent transport and control in quantum nanostructures (SpiCo)	Nanostructured materials such as self-assembled semiconductor quantum dots and nanowires are currently investigated as potential building blocks for a wide range of applications, from (opto)electronics to biochemical sensing. At the same time, such nanomaterials offer unique opportunities to create relatively simple and tunable electronic systems in which complex quantum phenomena can be explored. In this talk, I will focus on quantum-dot devices obtained by contacting individual semiconductor nanostructures such as SiGe self-assembled islands and (In,Ga)As nanowires. In particular, I will present tunneling spectroscopy measurements in a magnetic field. These measurements provide accurate information on the quantum- dot electronic properties and, in particular, on the field- induced Zeeman splitting of the confined electronic states. In the case of silicon-germanium islands, our measurements reveal strong g-factor anisotropy as well as a pronounced gate-voltage dependence of the g-factor. Such a gate tunability of the g-factor opens an opportunity for performing all-electrical spin coherent manipulations.

Robert Stamps	Exchange anisotropy, exchange bias and exchange springs
Presentation type :	R. Stamps
Invited	School of Physics
University of Western Australia	University of Western Australia
WA 6009 Country : Australia Tel: +61 6488 3794 Fax: +61 6488 1014 Email: stamps@cyllene.uwa.edu.au	Exchange anisotropy appears in a number of interesting dynamic problems in ferromagnet/antiferromagnet coupled systems. The key idea is that the ferromagnet is only affected by exchange coupling across the interface to a magnetic moment somehow induced at the interface of the antiferromagnet. In this talk some of the interesting dynamics unique to the ferromagnet/antiferromagnet interface are described including rotatable anisotropy, domain wall mass
FONE Project: Invited	enhancement and pinning, and spin wave and resonance frequency shifts. Emphasis is placed on how measurement of dynamic processes can be used to determine important physical parameters. In this talk, specific examples will be given for domain wall dynamics [1], ferromagnetic resonance and spin wave propagation [2,3], and the switching of single-domain ferromagnetic particles [4]. Interesting and unusual results appear in systems with high levels of frustration and disorder. This is illustrated with a discussion of a peculiar bias reversal observed in spin glass exchange biased multilayers [5].
	Interface exchange phenomena are discussed also for two novel systems that are not well understood at present. In one case we present preliminary results for a bilayer composed of a ferromagnet in contact with a multiferroic. A second example is exchange spring behavior observed in a lateral superlattice.
	References [1] R. L. Stamps, K. Usadel, "Dynamic consequences of exchange enhanced anisotropy", Europhysics Lett., 74, 512 (2006). [2] L. Wee, R. L. Stamps, L. Malkinski, Z. Celinski, "Rotatable gnicotropy and mixed interfaces: Exchange bigs in Eq. (Khiif, "
	 [3] R. L. Stamps, R. E. Camley, R. J. Hicken, "Surface spin waves in coupled ferromagnet/ antiferromagnets", Phys. Rev. B 54, 4159-4164 (1996).
	[4] R. L. Stamps, "Dynamic magnetic hysteresis and anomalous viscosity in exchange bias systems", Phys. Rev. B 61, 12174-12180 (2000).
	[5] M. Ali, P. Adie, C. H. Marrows, D. Greig, B. J. Hickey R. L. Stamps, "Exchange bias using a spin glass", Nature: Materials, 6, 70 (2007).

Vitali Metlushko	Problems and Solutions with Integrating Magnetic Nanostructures into Functional 3-D Devices J. Sautner (1), J. Fields (1), P.Vavassori (2,3), B. Ilic (4), J. Unguris
Presentation type :	(5) and V. Metlushko (1)
University of Illinois at Chicago Department : ECE	(1) University of Illinois at Chicago, Chicago, IL 60607, USA, (2) CIC nanoGUNE Consolider, E-20009 San Sebastian, Spain, (3) ² CNISM, CNR-INFM S3, and Dipartimento di Fisica, Università di Ferrara, I-44100 Ferrara, Italy, (4) Cornell Nanofabrication Facility, School of App. and Eng. Physics, Cornell University, Ithaca, NY 14853, (5) National Institute of Standards and Technology, Gaithersburg, MD, USA
Country : USA Tel: +1+312-413-7574 Fax: +1+312-996-6465 Email: vmetlush@ece.uic.edu	Most of magnetic nano-structures today are ultrathin or nanostructured films and multilayers. The main challenge is to find a suitable technology to integrate and to contact nanostructures in a reliable manner. Here, we investigate the problem of contact integration into functional 3-D devices and evaluate the influence of 3-D magnetic layer geometry on performance of magneto-electronic devices. Real devices
FONE Project: Invited	are truly 3-dimensional structures. Their topography must absolutely be taken into consideration during the design phase since their inherent non-planarity will profoundly affect their magnetization profile. Our initial results strongly indicate that the "non-flatness" of magnetic layer strongly influences the possible magnetic states, alters the switching mechanism and leads to totally new behavior, which was not observed in classic 2-D thin film magnetic structures. Our experimental results will be compared with detailed micromagnetic simulations. J. S., J. F and V.M. support by the U.S. NSF, Grant ECCS- 0823813

Jamie Warner	Electron spin resonance studies of purified nanotubes separated into metallic and
Presentation type : Oral	semiconducting varieties. Jamie Warner (1), Mujtaba Zaka (1), John Morton (1), Andrew Briggs (1)
University of Oxford Department of Materials OX1 3PH United Kingdom Tel: 01865 273790 Fax: 01865 273789	 (1) Department of Materials, University of Oxford Carbon nanomaterials such as fullerenes, nanotube and graphene have potential in spintronic devices. The unique structure enables the construction of solid sta electronic devices that exhibit quantum behaviour
Email: Jamie.warner@materials.ox.ac.uk Proiect	However, understanding the intrinsic properties of electron spin in ensembles is often complicated by the presence of impurities, such as metal catalysts, amorphous carbon and graphitic carbon. There has been considerable debate over the spin resonance
Intermolecular propagation of electron spin states (IMPRESS)	properties of carbon nanotubes. This has been fuelled primarily by measurements on ensembles containing mixed species of metallic and semiconducting nanotubes, along with impurities. We shall present ou latest results on the electron spin resonance studies of carbon nanotubes that have been highly purified and also separated into metallic (98%) and semiconducting (98%) varieties using density gradient ultracentrifugation.

Kuzmany Hans	Towards an Engineering of Spin Chains Inside SWCNTs with Controlled Spin Separation
Presentation type : Oral	Kuzmany Hans (1), Pfeiffer Rudolf (1), Peterlik Herwig (1), Simon Ferenc (2), Kataura Hiromichi (3)
University of Vienna Department : Physics 1090 Wien Austria Tel: 00431 4277 51306 Fax: Email: hans.kuzmany@univie.ac.at Project 05-FONE-FP-002 / Intra- Molecular Propagation of Electron Spin States (IMPRESS)	(1) Faculty of Physics, University of Vienna, A, (2) Institute of Physics, Budapest University of Technology and Economics, H, (3) Nanotechnology Research Institute, AIST, Tsukuba, J Linear arrangements of molecules which carry a spin are of fundamental interest and may eventually provide useful systems for quantum information processes. We performed experiments where the electron spin was provided from a nitrogen atom which was either encapsulated in a C_60 cage (N@C_60) or substituted a carbon atom on the cage (C_59N). In both cases the separation of the spins was uncontrolled which called for the engineering of new structures where the spin separation is controlled. This can be done by functionalizing the fullerenes in a controlled manner. We analyzed such functionalized fullerenes outside and inside the tubes by X-ray diffraction, Raman scattering and quantum-chemical calculations. Examples of such systems were C_60 molecules functionalized with polyarenes as they were provided by the University of Nottingham. Raman scattering confirmed the successful filling and revealed information on the electronic structure of the functionalized molecular. X-ray diffraction allowed determining the averaged molecular distances inside the tubes. In agreement with quantum-chemical calculations the distances obtained were smaller than expected and subjected to strong fluctuations. This is due to molecular orientation. With respect to this problem bis-functionalized fullerenes with symmetric side groups such as were found to yield more controlled fullerene-fullerene distances. Details of the filling behaviour of such structures are in progress. Special attention is presently paid to SWCNTs where semiconducting and metallic tubes were separated by density gradient ultracentrifugation.

Maciej Misiorny	Spin effects in transport through a single-molecule magnet in the Kondo regime
Presentation type : Oral	Maciej Misiorny(1), Ireneusz Weymann (1,2) and Józef Barnaś (1,2)
Adam Mickiewicz University, Faculty of Physics Ul. Umultowska 85 61-614, Poznań Poland Tel: +48 61 829 5288	 Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland Physics Department, Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Ludwig- Maximilians-Universität München, 80333 München, Germany Institute of Molecular Physics, Polish Academy of Science, 60-179 Poznań, Poland
Pax: +48 61 829 5298 Email: misiorny@amu.edu.pl Project 05-FONE-FP-010 / Spin- dependent transport and electronic correlations in nanostructures (SPINTRA)	Due to their peculiar physical properties such as an energy barrier for the spin reversal or long spin relaxation times, single-molecule magnets (SMMs) are inherently predestined for applications in novel molecular electronic and spintronic devices [1]. Several different physical phenomena associated with SMMs have been theoretically considered. It has been shown that the SMM's spin can be reversed by means of spin polarized current pulse [2] or by applying a spin bias [3]. Moreover, when bridged between two nonmagnetic metallic electrodes, a SMM can work as a spin filter [4].
	Since spin-polarized current flowing through a SMM can affect the magnetic state of the molecule, it may become a key feature to be utilized in future SMM-based devices, and therefore the understanding of transport processes through SMMs is of major importance. So far, the main efforts have been focused on studying transport in the regime of weak coupling between electrodes and the molecule [5]. In the present work we analyze the opposite limit of the strong coupling, where under certain conditions new effects, such as the Kondo phenomenon, can occur.
	We consider a SMM between two metallic ferromagnetic electrodes with collinear magnetic moments, which are also parallel to the easy axis of the molecule. Electronic transport is assumed to take place via the lowest unoccupied molecular orbital (LUMO) level of the molecule. The flexible density matrix renormalization group approach [6] is used for calculation of the LUMO level spectral function as well as the conductance of the system.
	 [1] L. Bogani and W. Wernsdorfer, Nature Materials 7, 179 (2008). [2] M. Misiorny and J. Barnaś, Phys. Stat. Solid (b) 246, 695 (2009). [3] <u>HZ. Lu</u>, <u>B. Zhou</u> and <u>SQ. Shen</u>, Phys. Rev. B 79, 174419 (2009). [4] S. Barraza-Lopez, K. Park, V. Garcia-Suárez, and J. Ferrer, J. Appl. Phys. 105, 07E309 (2009). [5] M. Misiorny, I. Weymann and J. Barnaś, Phys. Rev. B - accepted (2009)
	[6] <u>A.I. TOTT</u> , <u>C.P. Moca</u> , <u>O. Legeza</u> , <u>G. Zarana</u> , Phys. Rev. B 78 , 245109 (2008)

Procolo	Kondo conductance in metallic nanocontacts with magnetic
Lucianano	impurities
	Procolo Lucignano
Presentation type : Oral	Coherentia CNR-INFM and Dipartimento di Scienze Fisiche Università di Napoli Federico II via Cintia Monte S. Angelo 80126 Napoli Italy
Coherentia CNR- INFM 80126 Napoli Country :Italia Tel: +39081676851 Fax: +39081676346 Email: procolo@na,nfn.it Project SPINTRA	The electrical conductance of atomic metal contacts represents a powerful tool to detect nanomagnetism. Conductance reflects magnetism through anomalies at zero bias generally with Fano lineshapes due to the Kondo screening of the magnetic impurity bridging the contact. A full atomic-level understanding of this nutshell many-body system is of the greatest importance, especially in view of our increasing need to control nanocurrents by means of magnetism. Disappointingly, zero bias conductance and its anomalies are not presently calculable from atomistic scratch. Standard density functional theory (DFT) would be quantitative but does not describe many body effects; methods such as the numerical renormalization group do yield the correct many body conductance but apply (as is done e.g., in quantum dots) to very simplified Anderson impurity models (AIMs), treated so far essentially as toy models. We demonstrate[1] a working route connecting approximately but quantitatively the two approaches and leading to a first-principles Kondo conductance calculation for a nanocontact, exemplified by a Ni impurity in a Au nanocontact. A fano-like conductance lineshape is re-obtained microscopically, and shown to be controlled by the impurity s-level position. We also find a relationship between conductance anomaly and geometry, as the two equilibrium positions of the Ni atom, bridging and substitutional, possess different bare spins (S=1/2 and S=1, respectively) with opposite antiferromagnetic and ferromagnetic Kondo screening - the latter exhibiting a totally different and unexplored zero bias anomaly. The present matching method between DFT and NRG should permit the quantitative understanding of this larger variety of Kondo phenomena at more general magnetic nanocontacts.

David Herranz	Asymmetric dependence of 1/f noise on bias in fully epitaxial Fe/MgO/Fe magnetic tunnel junctions
Presentation type : Oral	D. Herranz ¹ , R. Guerrero ¹ , A. Gomez-Ibarlucea ¹ , F. Greullet ² , C. Tiusan ² , M. Hehn ² , and F.G. Aliev ¹
Universidad Autónoma de Madrid Dpto. Física de la Materia Condensada C-III, Despacho 301	(1) Departamento Física Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain (2) Laboratoire de Physique des Matériaux, Nancy Université, Vandoeuvre-lès- Nancy Cedex, France
España Tel: +34-914975065 david.herranz@uam.es	Dynamic conductance and low frequency noise in epitaxial Fe(100)/Fe-C/MgO(100)/Fe(100) (MTJ-A) and Fe(100)/Fe /MgO(100)/Fe(100) (MTJ-B) magnetic tunnel junctions have with R*A product (resistance by area) below 1 MOhm*µm ²
FONE Project: European Science Foundation EUROCORES Programme 05-FONE-FP-010- SPINTRA	been studied as a function of the magnetic states in MTJs at biases up to 1.5V [1,2]. In the parallel state our epitaxial MTJs exhibit record low normalised 1/f noise (Hooge factor) being at least one order of magnitude smaller than previously reported, indicating low concentration of structural defects and good epitaxy. We have found that the Hooge factor asymmetry between parallel and antiparallel states may strongly dependent on the applied bias and its polarity both at room and low temperatures. The assymetric behavior of the low frequency noise as a function of bias polarity is in general reflects dependence of TMR on bias. Recent investigations [3] show that the asymmetric conductivity in respect to polarity of the applied bias voltage could be a consequence of the diffusion of the Oxigen atoms from MgO barrier to the top ferromagnetic electrode.
	 [1] R. Guerrero, et al., Appl. Phys. Lett, 91, 132504 (2007) [2] F.G.Aliev <i>et al.</i>, Appl. Phys. Lett, 91, 232504 (2007) [3] V. Serin <i>et al.</i>, Phys. Rev. B, 79, 144413 (2009)
	Authors acknowledge support from Authors acknowledge support from Spanish-French Integrated Action project (HF2006-0039), Spanish MEC (MAT2006-07196) and Comunidad de Madrid (S- 505/MAT0194). This work, as a part of the European Science Foundation EUROCORES Programme 05-FONE-FP-010-SPINTRA, was also supported by funds from the Spanish MEC (MAT2006-28183-E) and the EC Sixth Framework Programme, under Contract No. ERAS- CT-2003-980409.

Ahmad Awad	Spin wave modes in circular soft magnetic dots in
	vortex-state under in-plan magnetic field
Presentation type :	Ahmad A. Awad ¹ , Konstantin Y. Guslienko ^{2,3} , Juan F. Sierra ¹ , Gleb N. Kakazei ⁴ , Dong-Soo Han ⁵ , Sang-Koog Kim ⁵ , Vitali Metlushko ⁶ , and Earkhad G. Aliev ¹
Oral	1 Dpto. Fisica de la Materia Condensada, CIII, Universidad Autonoma de Madrid. Spain
Universidad Autonoma de Madrid	2 Dpto. Fisica de Materiales, Universidad del Pais Vasco, 20018 San Sebastian, Spain
Department: Dpto Fisica de la matria	3 IKERBASQUE, the Basque Foundation for Science, 48011 Bilbao, Spain
Condensada, C-III Zip code : 28049	4 IFIMUP-IN, Departamento de Fisica, Universidade do Porto, Porto, Portugal University of
Country : SPAIN Tel: 3491-4975065	5 Seoul National University, Seoul, South Korea 6 Illinois at Chicago, Chicago, Illinois, USA
Fax: 3491-4973961 Email: ahmad.awad@uam.es	Special interest in the magnetic vortices is inspired by the possibility of easy dynamical switching of the vortex core magnetization direction [1] that has been suggested as a new route to create nanoscale memory cells for data storage. Precise mapping of the high frequency spin excitation eigenmodes, especially the eigenmodes breaking axial symmetry, is of great importance
FONE Project: 05-FONE-FP-010 /Spin- dpendent transport	times. In the talk we report on broadband measurements of the spin dynamics in circular Permalloy dots excited by in-plane rf with the variable angle between the excitation and bias (H) fields.
and electronic correlations in nanostructures (SPINTRA)	Two sets of square arrays of Py circular dots were fabricated by lithography and lift-off techniques on a Si(100) substrate [2]. The first set includes 3 samples with same thickness and diameter and different dot center-to-center distance, d. The second set included two arrays of Py dots with different thickness and diameters. The excited SW were probed by broadband spectrometer based on vector network analyzer [2,3]. The dots are in the vortex ground state. We identify the vortex nucleation (H _n) and annihilation (H _a) fields. Fig. 1a shows the typical hysteresis for in-plane H (H _n and H _a marked by vertical arrows).In-plane bias magnetic filed (H) up to above the dot saturation field was applied. The dots were excited by in-plane rf with the variable angle between the excitation and bias fields.
	The measured spectra of the dots with L=25 nm and D=1035 nm are shown in Fig. 1 for parallel (Fig. 1b) and perpendicular (Fig. 1c) rf drive. The dynamic response remains qualitatively unaffected by the interdot dipole-dipole interaction ensuring that we are observing a single dot eigenmodes. Dots with aspect ratio β (height to dot radius) varied from 0.03 to 0.1 were explored. We found that for β exceeding approximately 0.05 variation of spin wave eigenfrequencies with β deviates from the predicted for magnetostatic modes $\sqrt{\beta}$ dependence. The frequency splitting of two lowest azimuthal modes was observed. The experimentally observed dependence of the frequency splitting on the dot aspect ratio was reasonably well described by dynamic splitting model accounting the spin wave –vortex core interaction.
	increasing H reveals three main field regions in the excitation spectra: (i) only single vortex is stable (SV); both the quasi-uniform and vortex states are stable (metastable vortex, MV); and the quasi-uniform or saturated state (US). In the SV regime (H <hn) td="" two<=""></hn)>

M. Mucha-Kruczynski	
	Theory of magneto-optical measurements of
Presentation type : Oral	bilayer graphene
	I. Fal'ko (1)
Lancaster University	
Department: Physics	(1) Department of Physics, Lancaster University, United
United Kinadom	Kingdom
Tel: +44 1524 593639	Recently, graphene materials attracted a lot
Fax: +44 1524 844037 Email: m.mucha-kruczynski @lancaster.ac.uk	of theoretical and experimental attention. In particular, peculiar low-energy behaviour of transport carriers has been found to give rise to fascinating new physical phenomena [1]. In this work, we use the tight-binding approximation to investigate, the magnete entired preparties of bilayer
Project 05-FONE-FP-006 / Spin- coherent transport and control in quantum nanostructures (SpiCo)	investigate the magneto-optical properties of bilayer graphene. First, we study the influence of lattice-symmetry breaking parameters on the Landau level (LL) structure and the robustness of selection rules for inter-Landau-level transitions [2]. Next, we incorporate into our model an external electric field perpendicular to the graphene layers. We present a self-consistent calculation of the resulting interlayer asymmetry [3]. We show how this asymmetry influences the Landau level spectrum in bilayer graphene and the observable inter-Landau level transitions when they are studied as a function of high magnetic field at fixed filling factor as measured experimentally [4]. We also analyse the magneto-optical spectra of bilayer flakes in the photon-energy range corresponding to transitions between degenerate and split bands of bilayers.
	[1] A.H. Castro Neto et al., Rev. Mod. Phys. 81 , 109 (2009);
	[2] M. Mucha-Kruczynski et al., to be published in J. Phys.: Cond. Matt. 21 ;
	[3] M. Mucha-Kruczynski et al., Sol. St. Comm. 149 , 1111 (2009);
	[4] E.A. Henriksen et al., Phys. Rev. Lett. 100 , 087403 (2008);

POSTER PRESENTATIONS

Piotr Stefanski	
Presentation type : Poster Spin Filtering Piotr Stefanski	g and TMR in Presence of Electron
IFM PAN Poznan 60-179 Poland	blecular Physics of the Polish Academy of
Tel: +48 61 8695 100We considerFax: +48 61 86 84 524magnetoresisterEmail:dot in the Cpiotrs@ifmpan.poznan.plferromagneticof anomalies ofharomalies of	quantum transport and tunneling ince (TMR) through an interacting quantum Coulomb blockade regime, attached to leads [1]. We show that there exist two kinds f TMR, which have different origin. One kind
Project nas the single frame of non in	nteracting electrons model. The second kind
Spin-Dependent Transport and Electronic Correlations in Nanostructures (SPINTRA) of anomalies i minima (and appear at the dot-lead coup increase and g the symmetry anomalies asso Coulomb block The TMR maxin 100 % is of this configuration I unpolarized. Th of experiment. Coulomb block appears due current [2] in (the conductar dot-leads coup increase of t polarization of show that the experimentally coupling asym- presented in semiconductor TMR have been	s caused by electron interactions. The TMR its sign change) of single particle origin conductance resonances for asymmetric bling. They are robust to the temperature gradually transform into local maxima when of the dot-lead coupling increases. The becated with electron interactions appear at cade, in-between conductance resonances. num at Coulomb blockade, far exceeding origin. It appears when in antiparallel (AP) both the current the dot occupancy are spin is maximum survives at typical temperatures We also predict the TMR sign change at kade, caused by electron interactions. It to the rapid polarization switching of the AP) configuration and the enhancement of nee in one of the (AP) spin channels by the oling asymmetry. It is very sensitive to the emperature and depends on the initial the current coming from the leads. We also nature of the discussed anomalies can be resolved by the change of the dot-leads metry and/or temperature. The results are the context of recent experiments on quantum dots in which similar features of nobserved.
[1] P. Stefanski,	Phys. Rev.B, 79, 085312 (2009).

Stijn Vandezande	The intrinsic domain wall resistance of Fe films with a periodic domain pattern
Presentation type: Poster	Stijn Vandezande (1), Chris Van Haesendonck (1), and Kristiaan Temst (2)
K.U.Leuven Laboratory of Solid State Physics and Magnetism Zip code : BE-3001 Leuven Country : Belgium Tel: +32 (0) 16 32 71 62 Fax: +32 (0) 16 32 79 83 Email: Stijn.Vandezande@fys.kuleuven.be FONE Project: Name of the Project SPINTRA	 (1) Laboratorium voor Vaste-Stoffysica en Magnetisme, K.U. Leuven, Celestijnenlaan 200D, BE-3001 Leuven, Belgium (2) Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Celestijnenlaan 200D, BE-3001 Leuven, Belgium The intrinsic domain wall resistance (DWR) of 180° Néel walls in a polycrystalline Fe film is determined by creating a periodic domain pattern, obtained by locally inducing exchange bias with a template of antiferromagnetic CoO lines on top of the film [1]. After field cooling, the coercivity is spatially modulated, resulting in 180° domain walls. To determine the intinsic DWR, a rotating magnetic field is used to reversibly create and annihilate the domain walls. After correcting for the anisotropic magnetoresistance, the extracted DWR is positive and can be interpreted in terms of the giant magnetoresistance mechanism. References [1] S. Vandezande et al., Applied Physics Letters, 94.
	192501 (2009)

Grzegorz Grabecki	Contact superconductivity at In/PbTe interfaces: weak links and Andreev reflection
Presentation type: Poster	G. Grabecki(1,2), K. A. Kolwas(1), J. Wróbel(1), K. Kapcia(3), R. Puźniak(1), R. Jakieła(1), E. Janik(1), M. Aleszkiewicz(1),T. Dietl(1,4), G. Springholz(5), G. Bauer(5)
Institute of Physics PAS Department : Spintronic and Cryogenic Research Al. Lotnikow 32/46, Warsaw, PL-02-668 Poland Tel: (48-22) 8435324	 Institute of Physics, Polish Academy of Sciences, Warsaw, Dept. Mathematics and Natural Sciences, UKSW, Warsaw, (3) Department of Physics, Adam Mickiewicz University, Poznań, (4) Institute of Theoretical Physics, University of Warsaw, Warszawa, (5) Institut für Halbleiterphysik, JKU Linz, Austria
Fax: (48-22) 8430926 Email: grabec(at)ifpan.edu.pl	Development of transparent superconductor- semiconductor (S-Sm) interfaces is crucial for entangled electron pair production in solid by means of Cooper pair injection [1]. In the present work, we study the microscopic
Project 05-FONE-FP-010/ Spin- dependent transport and electronic correlations in nanostructures (SPINTRA)	nature of the interface between indium and lead telluride (In/PbTe) [2]. The samples have been obtained by thermal evaporation of In on MBE-grown PbTe quantum wells embedded between Pb _{1-x} Eu _x Te barriers. E-beam lithography-defined S-Sm junctions have dimensions covering the range from 200 µm to 0.5 µm. For all S-Sm structures studied, we have confirmed lack of Schottky barriers and metallic conductance across the junctions. However, the real junction areas are much smaller than apparent ones, pointing to the formation of weak links between In and PbTe. These links exhibit superconducting transitions in the temperature range between 4 to 7 K, well above the usual transition in the indium layer [3,4]. Thus, they give rise to additional superconducting phases, whose presence we have confirmed by direct magnetic susceptibility measurements. Furthermore, differential conductance as a function of the DC voltage shows zero- bias peaks much higher than those expected for Andreev reflection. We assign them to critical-current effects in the weak links. The weak-link superconductivity persists up to magnetic fields as high as several Tesla, suggesting nanometer scale diameters of the links. We show experimental evidences that dislocations acting as fast diffusion paths for In and/or Pb may be responsible for the link formation. However, at temperatures lower than T_c of the indium layer, the interface conduction becomes determined by the Andreev reflection. From our data, we estimate the interface transmission to be at least 30%. Therefore, despite the complex interface physics, our system is useful for studying Cooper-pair injection-related phenomena at low temperatures assuming a simple S-Sm interface.
	 G. Lesovik, T. Martin, and G. Blatter, Eur. Phys. J. B 24, 287 (2001). G. Grabecki et al., Phys Rev. B 72, 125332 (2005). D.L.Miller et al., Phys Rev. B 13, 4834 (1976). D. Chang et al., Phys. D: Appl. Phys., 13, 715 (1980).

Michal Bek	Transport in T-shape ballistic junction: Back action in linear and non-linear regime
Presentation type: Poster	(1) Institute of Molecular Physics, Polish Academy of Sciences, ul. M. Smoluchowskiego 17, 60-179 Poznan, Poland
Institute of Molecular Physics, Polish Academy of Sciences	(2) Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warszawa
60-179 Poland Tel: +48-61-8695221 Fax: +48-61-8684524 Email: bek@ifmpan.poznan.pl Project SPINTRA	Multi-terminal ballistic junction systems attract much attention for their interesting physical properties and as candidates for high speed logic gates with a very low power consumption [1]. Recent experiments [2] on such system show that a current switching is accompanied by voltage oscillations in floating channels. Here we want to present modelling of three-terminal T-shape ballistic junction (TBJ) and explain back action of the floating channels. We assume that the device consists of three perfect leads and a ballistic coupling region. Transport properties are determined by means of the non-equilibrium Green function formalism for a tight binding model [3]. In the first part, our procedure is used to the linear regime when the applied bias voltage is small. We present two different device configurations at low temperature limit. The applied model explains conductance characteristics with dips and peaks as a result of back action in a voltage terminal (in the floating electrode with a net current I=0). Bend resistance and threshold effect play a significant role in this case. Voltage fluctuations in the floating electrode are related to asymmetric changes of transmissions between leads. In the second part, the applied voltage is large (non-linear regime) and the temperature is low. Operating the voltage between left (Vi=V/2) and right (VR=-V/2) branch, the TBJ shows a strong non-linear behavior of the potential in the detector electrode. Different model parameters, i.e., hopping integrals, number of channels, local potentials in the leads, are varied. At most cases voltage on the detector electrode V _D is negative. For a small bias voltage, we observe that V _D becomes positive. This effect is connected with bend resistance. We study also an influence of the threshold effect on the dependence of V _D in various situations, i.e. when the conductance shows a peak or a dip.

Alexander Volodin Presentation type: Poster	Co nanowire as a strong magnetic gradient source for magnetic resonance force microscopy Alexander Volodin (1), Luc Piraux (2), Chris Van Haesendonk (1)
Katholieke Universiteit Leuven Laboratory of Solid-State Physics and Magnetism BE-3001 Belgium Tel: +32 16327193	(1) Laboratorium voor Vaste-Stoffysica en Magnetisme, Katholieke Universiteit Leuven, Leuven, Belgium (2) Unite de Physico-Chimie et de Physique des Materiaux, Universite Catholique de Louvain, Louvain-la-Neuve, Belgium
Fax: +32 16327983 Email: Alexander.Volodin@fys.kuleuven.be Project 05-FONE-FP-010 / Spin-dependent transport and electronic correlations in nanostructures (SPINTRA)	The magnetic field gradient in magnetic resonance force microscopy (MRFM) is usually created by a small probe magnet. Micromagnets with well-known magnetic properties have to be used in MRFM for reliable MRFM image deconvolution. Magnetic nanowires electrodeposited into the cylindrical pores of track-etched polymer membranes are very well suited for this purpose because such nanowires provide a very high field gradient (up to 10 MT/m). Moreover, the cylindrical shape with large aspect ratio of the magnetic nanowire is very convenient, since cylinders are the best compromise between high symmetry and strong stray field.
	We propose to use a Co magnetic nanowire as source of a strong magnetic field gradient for MRFM. Using a Co nanowire (diameter ~ 100 nm) we succeeded to perform paramagnetic resonance imaging as well as ferromagnetic resonance (FMR) imaging of sub-µm size samples. The local imaging capability of MRFM is lost in the case of ferromagnetic samples due to the strong coupling between the spins. However, it is possible to excite highly localized modes to recover the local FMR imaging capability.

Piotr Trocha	Dicke and Fano effect in orbital Kondo transport through double quantum dots
Presentation type: Poster	Piotr Trocha (1), Józef Barnaś (2)
Adam Mickiewicz University Department of Physics	 (1) Department of Physics, Adam Mickiewicz University, 61- 614 Poznań, Poland (2) Institute of Molecular Physics, Polish Academy of Sciences, 60-179 Poznań,, Poland
Country : Poland Email: piotrtroch@gmail.com Proiect	Dicke- and Fano-like resonances in electronic transport through double quantum dots in orbital Kondo regime are considered theoretically. In general, the double dot system is coupled via
N. ERAS-CT-2003-980409/ SPINTRA	both Coulomb interaction and direct hoping. Moreover, the indirect hopping processes between the dots (through the leads) are also taken into account. To investigate system's electronic properties we apply slave-boson mean field technique. With help of the SBMF approach the local density of states for both dots and the transmission probability (as well as conductance) is calculated.

Michałek Grzegorz	Influence of Coulomb interactions on current auto- and cross-correlations in coupled quantum
Presentation type: Poster	Michałek Grzegorz, Bułka Bogdan
Institute of Molecular Physics PAS 60-179 Poznań Poland Tel: +48 61 869 52 92 Fax: +48 61 868 45 24 Email: grzechal@ifmpan.poznan.pl Project Spin-dependent transport and electronic correlations in nanostructures (SPINTRA)	Institute of Molecular Physics, Polish Academy of Sciences ul. Mariana Smoluchowskiego 17, 60-179 Poznań, Poland In this contribution we study dynamical correlations in electrical currents flowing through four-terminal system which consists of two large quantum dots coupled in parallel. Transport properties of the system are determined in the limit of sequential tunneling. In general, due to the Pauli exclusion principle, the Fano factor is reduced below Poissonian value and the cross-correlations are negative. We show that strong dot-dot Coulomb interactions together with assymetrical coupling to the electrodes can lead to bunching of the tunneling events which results in an enhancement of the auto-correlations. The strong inter- dot coupling is also responsible for the charge pumping effect: addition/extraction of one electron into/out the top QDs leads to pushing an electron out/into the bottom QDs. We have decomposed the dynamical parts of auto- and cross-correlation functions in order to show individual contributions of various dynamical processes in the charge space which are responsible for positive cross-correlations
	Our theoretical results are inspired by recent experiment of McClure et al. in which the gate-controlled sign reversal of noise cross correlation were demonstrated [1].
	References [1] D.T. McClure et al. Phys. Rev. Lett., 98, 056801 (2007).

Stefan Krompiewski	Spin-sensitive transport in graphene S. Krompiewski (1)
Presentation type :	(1) Institute of Molecular Physics, Polish Academy of Sciences,
Poster	M. Smoluchowskiego 17, 60-179 Poznań, Poland
Institute of Molecular	This contribution reports on spin-sensitive transport properties
Physics,	of graphene nanoribbons sandwiched between either two
Polish Academy of Sciences	ferromagnetic contacts or one ferromagnetic and the other -
60-179	paramagnetic. In the former case, giant magnetoresistance
Poland	(GMR) effect is discussed, whereas in the latter the attention is
Tel: 004861 8695126	directed to current spin-polarization and spin-accumulation
Fax: 004861 8684524	at the ferromagnetic drain-electrode. It turns out that all these
Email:	phenomena depend strongly on the current direction (zigzag
stefan@ifmpan.poznan.pl	vs. armchair transport direction), as well as on the aspect ratio
FONE Project:	of the ribbon (width/length). On average: (i) the GMR effect
Name of the Project	for armchair-edge graphene ribbons is stronger than that for
05-FONE-FP-010	zigzag-edge graphene ribbons, and (ii) at small gate voltages
Spin-dependent transport	the spin-polarization of conductance is correlated with the
and electronic correlations	spin accumulation in the vicinity of the ferromagnetic
in nanostructures (SPINTRA)	electrode.

Jan Zemen	Tunneling Anisotropic Magnetoresistance Effect in CoPt Systems
Presentation type :	Jan Zemen(1), Jan Mol(2), Jan Mašek(3), Tomáš Jungwirth(1,4)
Poster	(1)Institute of Physics of the AS CR, v. v. i., Cukrovarnická 10, Prague, Czech Republic
	(2)Delft University of Technology, Delft, The Netherlands
Institute of Physics of the AS CR, v.v.i.	(3)Institute of Physics of the AS CR, v. v. i., Na Slovance 2, Prague, Czech Republic
Department of Spintronics and Nanoelectronics 18221	(4)School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK
Country :Czech Republic Tel: 00420220318479	Tunneling anisotropic magnetoresistance (TAMR) effect, first observed in (Ga,Mn)As
Email: zemen@fzu.cz	ferromagnetic semiconductors, originates in the dependence of tunneling density of states in a
FONE Project: Name of the Project	ferromagnetic layer on magnetization direction. This effect becomes remarkable in materials
SpiCo	with a strong spin-orbit coupling and large magnetic moments. We use a tight-binding model
	to describe the electronic structure of a layered system consisting of Co and Pt slabs and to
	study the anisotropic densities of states by changing the direction of local moments in the
	magnetic slab. In the same way, adopting the Landauer- Buttiger scheme, we calculate also the
	conductance that directly defines TAMR. We discuss the role of anisotropic density of states
	and of the current matrix elements in TAMR and compare the results to ab initio calculations
	[1] and experiments [2].
	[1] A. B. Shick, F. Máca, J. Mašek, and T. Jungwirth, PRB 73, 024418 (2006)
	[2] B. G. Park, J. Wunderlich, D. A. Williams, S. J. Joo, K. Y. Jung, K. H. Shin, K. Olejník,
	A. B. Shick, and T. Jungwirth, PRL 100, 087204 (2008)

Zbvnek Soban	GaMnAs Curie Temperature Determination from
	Transport Data
Presentation type : Poster	Zbynek Soban (1,2), Vit Novak (1), Kamil Olejnik (1), Miroslav Cukr (1)
Institute of Physics AS CR Cukrovarnicka 10 162 53 Praha	(1) Institute of Physic AS CR, Prague, Czech Republic, (2) Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic
Czech Republic Tel: +420 220318439 Email: soban@fzu.cz	We present a systematic comparison of reliability and accuracy of Curie temperature determination by various transport based methods: temperature derivative of resistivity [1], Arrott-plot technique, and (planar) Hall effect due to the spontaneaous magnetization.
FONE Project:	
05-FONE-FP-010 Spin-dependent transport and electronic correlations in nanostructures (SPINTRA)	Figure 1 a) Temperature dependence of resistivity of GaMnAs sample with 13%Mn. b) Numerically determined temperature dependence from Fig. 1a); the singularity at TC=186 K is obvious.
	[1] V. Novak et al., Phys.Rev.Lett. 101, 077201 (2008)

Raimund Kirchschlager	Anisotropic Magnetotransport Properties in Ferromagnetic GeMnTe R. Kirchschlager, G. Springholz, M. Hassan , R. T. Lechner, W. Heiss, G. Bauer

Institut für Halbleiter-und Festkörperphysik, Universität Linz, A-4040 Linz, Austria

Interest in GeMnTe has been stimulated by recent reports on ferromagnetic behavior up to 190K in epilayers of this material based on SQUID magnetometry [1]. However, a quantitative analysis of the SQUID data shows that a considerable part of Mn does not show up in the ferromagnetic component of the magnetization signal. In the present work, magneto-transport experiments were performed to elucidate the relevant amount of Mn that is ferro-magnetically coupled through the mobile holes. In particular, we investigate the influence of coercive fields on the magneto transport of GeMnTe epilayers

manifestation of ferromagnetism in the samples. The structures were grown by molecular beam epitaxy on (111) BaF2 substrates. 500 nm Ge1xMnxTe layers were grown on 10 nm GeTe with Mn content ranging from x=0.1 to 0.5 and hole concentrations of about 3×10²¹cm-³. For magneto

to determine the

Fig. 1: SQUID (a) and anisotropic magneto-resistance (b) for a $Ge_{0.5}Mn_{0.5}Te$ layer as a function of temperature and magnetic field. (c) Planar Hall effect of a $Ge_{0.9}Mn_{0.1}Te$ layer at 2 K and 0.1 Tesla for clockwise and counterclockwise directions.

transport measurements, Hall bars were fabricated by optical lithography and etching. SQUID data of the sample with Mn content of x=0.5 are shown in Fig.1a, with the insert depicting hysteresis loops at T= 5K, 77K and 140K. From this data we infer a TC of around 190K and that the ferromagnetic signal coexists together with paramagnetic characteristics. In Fig. 1b anisotropic magneto resistance (AMR) measurements are shown for temperatures ranging from 60 to 95K. The current direction is along [1-10] and the magnetic field either transversal along <11-2> (blue) or longitudinal along <1-10> (red). The difference between the two in-plane AMR's disappears at T=85K. Below this temperature the AMR exhibits the characteristic features of a ferromagnetic metal, namely, that the transverse MR is lower than the longitudinal one. Additional measurements of the planar Hall effect (PHE) [2] yield a ferromagnetic Curie temperature of 85K. Above 85 K,

Presentation type : Poster

Johannes Kepler University Department : Institute of Semiconductor and Solid State Physics

Zip code : 4040 Linz

Country : Austria Tel: +4973224689643

Fax:

Email:

raimund.kirchschlager@jku.a t

FONE Project:

05-FONE-FP-010: Spindependent transport and electronic correlations in nanostructures (SPINTRA)

the dependence of the AMR on the applied magnetic field strongly changes and the transverse MR becomes larger than the longitudinal MR. This difference vanishes only at a T of about 190K where the measured magnetic moment (SQUID) vanishes. For a sample with Mn content of <i>x</i> = 0.1, the PHE as a function of the in-plane rotation angle is shown in Fig. 1 c for an applied field of 0.1 T and T=2K. For clockwise (CW, blue) and counterclockwise (CCW, red) rotation, we see the typical reversal of the signal polarity in the PHE. Increasing the temperature leads to a disappearance of this difference in the PHE measurements, whereas the in-plane 120° symmetry remains in the magneto transport data. Our results indicate large differences in the Curie temperature depending on the analysis method, which can be explained by the existence of magnetic clusters or precipitates in the samples, in agreement with the reduced saturation magnetization.
[1] Y. Fukuma, <i>et al.</i> , Appl. Phys. Lett. 93 , 252502 (2008). [2] H.X. Tang, <i>et al.</i> , Phys. Rev. Lett. 90 , 107201 (2003).

LIST OF PARTICIPANTS

Farkhad Aliev Universidad Autonoma de Madrid Dpto Fisica de la Materia Condensada, C-III 28049 Cantoblanco-Madrid SPAIN	Tel: +3491-4974660 Fax: +3491-4973961 Email: farKhad.aliev@uam.es
Rolf Allenspach IBM Research IBM Zurich Research Laboratory Saeumerstrasse 4 CH-8803 Rueschlikon Switzerland	phone: +41 44 724 82 67 Fax: +41 44 724 89 56 email: ral@zurich.ibm.com
Ahmad Awad UAM Faculty of sciences (C-III) 28049 Madrid Spain	Tel: +3491-4975065 Fax: +3491-4973961 email: ahmad.awad@uam.es
Michal Bek Institute of Molecular Physics Polish Academy of Sciences ul. Smoluchowskiego 17 60-179 Poznan Poland	phone: +48-61-8695221 Fax: +48-61-8684524 email: bek@ifmpan.poznan.pl
Alessandro Betti Dipartimento di Ingegneria dell'Informazione: Elettronica, Informatica, Telecomunicazioni Universita' di Pisa, via Caruso 16, 56122 Pisa Italy	phone: +390502217639 Fax: +390502217522 email: alessandro.betti@iet.unipi.it
Bogdan Bulka Institute of Molecular Physics, Polish Acxademy of Sciences ul. M. Smoluchowskiego 17, 60-179 Poznañ Poland	phone: +48-61-8695152 Fax: +48-61-8684524 email: bulka@ifmpan.poznan.pl
Stefano Chesi University of Basel Department of Physics Klingelbergstrasse 82 4056 Basel Switzerland	phone: +41 61 267 3695 Fax: +41 61 267 1349 email: stefano.chesi@unibas.ch

Michael Coey	phone: 353 1 8961470
Trinity College Dublin	Fax: 353 1 6711759
School of Physics	email: jcoey@tcd.ie
Trinity College,	
Dublin 2	
Ireland	
Silvano De Franceschi	mail:
CNR-INFM TASC	silvano.defranceschi@cea.fr
I-34012 Basovizza, Trieste	
Italy	
Maria Merlyne De Souza	phone: 44-114-2225167
Institution: University of Sheffield	Fax: 44-114-2225143
EEE dept,	
Mappin Street,	m.desouza@sheffield.ac.uk
Sheffield ST 3 JD	
	Email: eib@zurich ibm.com
IBM Research	
IBM Zurich Research Laboratory	
Saeumerstrasse 4	
CH-8803 Rueschlikon	
Switzerland	
Severino Falcon Morales	
Spanish MICINN	
Spain	
Andrés Gómez-Ibarlucea Martí	email:
UAM Faculty of Sciences (C-III)	andres.gibarlucea@uam.es
28049 Madrid	
Spain Gran gara Grah a alsi	abara: (19.00) 8425204
Grzegorz Grabecki	phone: (48-22) 8435324
al Lotpikow 22/4/	FUX: (46-22) 6430926
DI 02 442 Warraw	ernali. grabec@lipan.eau.pi
Poland	
Ang Helman	email: abelman@esf ora
European Science Foundation	critali. ancimari@csi.org
Coordinator	
1. gugi Lezav Marnesia	
67080 Strasbourg	
France	
David Herranz Aragoncillo	email: david.herranz@uam.es
UAM Faculty of Sciences (C-III)	
28049 Madrid	
Spain	

Giuseppe lannaccone	phone: +39 050 2217677
IEIIT-CNR and University of Pisa	Fax: +39 050 2217522
c/o Dipartimento di Ingegneria	email: g.iannaccone@iet.unipi.it
dell'Informazione, Universita' di Pisa	
Via Caruso 16, 56122 Pisa	
Italy	
Suhas Jejurikar	phone: +44 0114 2225826
Sheffield University	email: S.Jejurikar@sheffield.ac.uk
address: Electronic and electrical	
Engg.	
Fredrick Mappin Building	
Sheffield S1 3JD	
UK	
Klaus Kern	phone: +49 711 689 1660
Max Planck Institute for Solid State	Fax: +49 711 689 1662
Research	email: k.kern@fkf.mpg.de
Heisenbergstr. 1	
D-70569 Stuttgart	
Germany	
Raimund Kirchschlager	Phone: 4973224689643
Johannes Kepler University	Fax:
Department : Institute of	email:
Semiconductor and Solid State	raimund.kirchschlager@jku.at
Physics, 4040 Linz	
Austria	
Yashar Komijani	Phone: ++41 44 63 32 245
ETH Zurich	Fax: ++41 44 63 31 146
Solid Sta hysics Laboratory	email: komijani@phys.ethz.ch
HPF E4	
Schafmattstrasse 16	
8093 Zurich	
Switzerland	
Hans Kosina	phone: +4315880136013
TU Wien, Institute for	Fax: +4315880136099
Microelectronics	email: kosina@iue.tuwien.ac.at
Gusshausstrasse 27-29/E360	
Austria	
Stefan Krompiewski	phone: 48-61 86-95-126
Institute of Molecular Physics, Polish	Fax: 48-61 86-84-524
Academy of Sciences	email: stefan@ifmpan.poznan.pl
IFM PAN, ul M. Smoluchowskiego 17,	
60-179 Poznan	
Poland	
Hans Kuzmany	phone: 00431 427751306
University of Vienna	email:
Strudlhofgasse 4, A-1090 Wien	hans.kuzmany@univie.ac.at
Austria	

Igor Kuzmenko Lancaster University Department of Physics, Lancaster, LA1 4YB UK	phone: (+44) (0)1524-593291 Fax: (+44) (0)1524 844037 email: i.kuzmenko@lancaster.ac.uk
Antonio Lara UAM Faculty of Sciences (C-III) 28049 Madrid Spain	Email: antonio.lara@estudiante.uam.es
Serban Lepadatu institution: The University of Leeds School of Physics and Astronomy The University of Leeds Leeds, LS2 9JT UK	phone: +0(44) 113 3436646 email: S.Lepadatu@leeds.ac.uk
Catherine Lobstein European Science Foundation 1 quai Lezay Marnésia Strasbourg France	phone: +33 3 88 76 71 30 Fax: +33 3 88 37 05 32 email: clobstein@esf.org
Daniel Loss University of Basel Department of Physics Klingelbergstrasse 82 4056 Basel Switzerland	email: daniel.loss@unibas.ch
Procolo Lucignano Coherentia CNR-INFM & Dipartimento di Fisica Università di NapoliFederico II Monte S. Angelo I-80126 Napoli Italy	phone: +39(0)81676851 Fax: +39(0)81676851 email: procolo@na.infn.it
Christopher Marrows University of Leeds School of Physics and Astronomy Leeds LS2 9JT UK	phone: +44 113 3433780 Fax: +44 113 3433900email: c.h.marrows@leeds.ac.uk
Vitali Metlushko University of Illinois at Chicago 851 S. Morgan, MC 154, 1020 SEO Chicago, IL 60607 USA	phone: +1-312-413-7574 Fax: +1_312-996-6465 email: vmetlush@ece.uic.edu

Grzegorz Michalek Institute of Molecular Physics, Polish Academy of Sciences ul. Mariana Smoluchowskiego 17 60-179 Poznañ Poland Maciej Misirony Adam Mickiewicz University, Faculty of Physics ul. Umultowska 85 61-614 Poznan	phone: +48 61 869 52 92 Fax: +48 61 868 45 24 email: grzechal@ifmpan.poznan.pl phone: 0048 61 829 63 96 Fax: 0048 61 829 52 98 email: misiorny@amu.edu.pl
Poland Marcin Mucha-Kruczynski	phone: +44 1524 593639
Lancaster University Physics Department Lancaster LA1 4YB United Kingdom	Fax: +44 1524 844037 email: m.mucha- kruczynski@lancaster.ac.uk
Vit Novak Institute of Physics AS CR Cukrovarnicka 10 162 53 Praha Czech Republic	phone: +420 220318471 email: vit.novak@fzu.cz
Shu- Pei Oei University of Cambridge Centre for Advanced Photonics and Electronics 9 JJ Thomson Avenue Cambridge CB3 0FA United Kingdom	phone: 447957962732 email: spo25@cam.ac.uk
Giovanni Piero Pepe CNR-INFM Coherentia & University of Naples Federico II Facoltà di Ingegneria Dipartimento Scienze Fisiche Piazzale Tecchio, 80 80125 NAPOLI Italy	phone: +39-081-7682584 Fax: +39-081-2391821 email: gpepe@na.infn.it
Trocha Piotr Adam Mickiewicz University Umultowska 85, 61-614 Poznañ Poland	email: piotrtroch@gmail.com

7hunak Sahan	phanot 1420,220,219,471
Institute of Physics, ASCR, V.V.I.	emali: soban@fzu.cz
Cukrovarnicka 10	
CZ-162 53 Prague 6	
Czech Republic	
Gunther Springholz	phone: 0043 732 2468 9602
Johannes Kepler University	Fax: 0043 732 2468 9602email:
Altenbergerstr. 69	aunther.sprinaholz@iku.at
A-4040 Linz	
Austria	
Robert Stamps	
University of Western Australia	F_{av} : +61864881014
School of Physics M012	
SCHOOL OF FHYSICS MULTS	
35 Silling Highway	
Crawley, Western Australia 6009	
Australia	
Piotr Stefanski	phone: +48 61 8695 100
Institute of Molecular Physics of	Fax: +48 61 86 84 524
the Polish Academy of Sciences	email: piotrs@ifmpan.poznan.pl
ul. M. Smuluchowskiego 17	
60-179 Poznan	
Poland	
Arturo Tagliacozzo	phone: +39081676832
institution: Universita' di Napoli	Fax: +39081676346
"Federico II"	email: arturo@pa infp it
Dipartimonto di Scienzo Eisicho	
Monto S Angolo Via Cintia	
Mircea Trif	phone: +41 61 26/ 36 56
University of Basel	email: Mircea.Trif@unibas.ch
Klingelbergstrasse 82, CH-4056	
Basel, Switzerland	
Maxim Tsoi	phone: +1 (512) 232-7962
The University of Texas at Austin	Fax: +1 (512) 471-9637
Physics Department, RLM 5.208	email: tsoi@physics.utexas.edu
1 University Station, C1600	
Austin TX 78712-0264	
Chris Van Haesendonck	phone: +32-16327501
K II Leuven	$F_{av} + 32 16 327083$
Laboratony of Solid State Dhysics	$\int (dx, -) dz = 10^{-} (dz) / 700$
	vanhaesenaonck@tys.kuleuven.be
Celestijnenlaan 200 D	
BE-3001 Leuven	
Belaium	

Stijn Vandezande institution: Laboratory of Solid State Physics and Magnetism address: K.U.Leuven, Celestijnenlaan 200D, BE-3001 Leuven Belgium	phone: +32 (0) 16 32 71 62 Fax: +32 (0) 16 32 79 83 email: Stijn.Vandezande@fys.kuleuven.be
Michel Viret CEA Saclay DSM/IRAMIS/SPEC Orme des merisiers bat. 772 91191 Gif sur Yvette cedex France	phone: (33) 01 69 08 72 17 Fax: (33) 01 69 08 87 86 email: michel.viret@cea.fr
Alexander Volodin Katholieke Universiteit Leuven Laboratorium voor Vaste- Stoffysica en Magnetisme Celestijnenlaan 200 D - Box 2414 BE-3001, Heverlee (Leuven) Belgium	phone: +32 16327193 Fax: +32 16327983 email: Alexander.Volodin@fys.kuleuven.be
Jamie Warner University of Oxford Department of Materials, Parks Rd, OX1 3PH, United Kingdom	phone: 01865 273790 email: jamie.warner@materials.ox.ac.uk
Dieter Weiss University of Regenburg Institute of Experimental and Applied Physics 93040 Regensburg Germany	phone: +499419433197 Fax: +499419433196 email: dieter.weiss@physik.uni- regensburg.de
Jerzy Wróbel Instytut Fizyki PAN al. Lotników 32/46 02-668 Warszawa Poland	phone: (48 22) 843 66 01 - 3145 Fax: (48 22) 847 52 24 email: wrobel@ifpan.edu.pl
Jan Zemen Institute of Physics of the AS CR, v.v.i. address: Na Slovance 2 CZ-182 21 Praha 8 Czech Republic	phone: 00420220318479 email: zemen@fzu.cz

1 quai Lezay-Marnésia, BP 90015 67080 Strasbourg cedex, France Tel: +33 (0)3 88767100, Fax: +33 (0)3 88370532