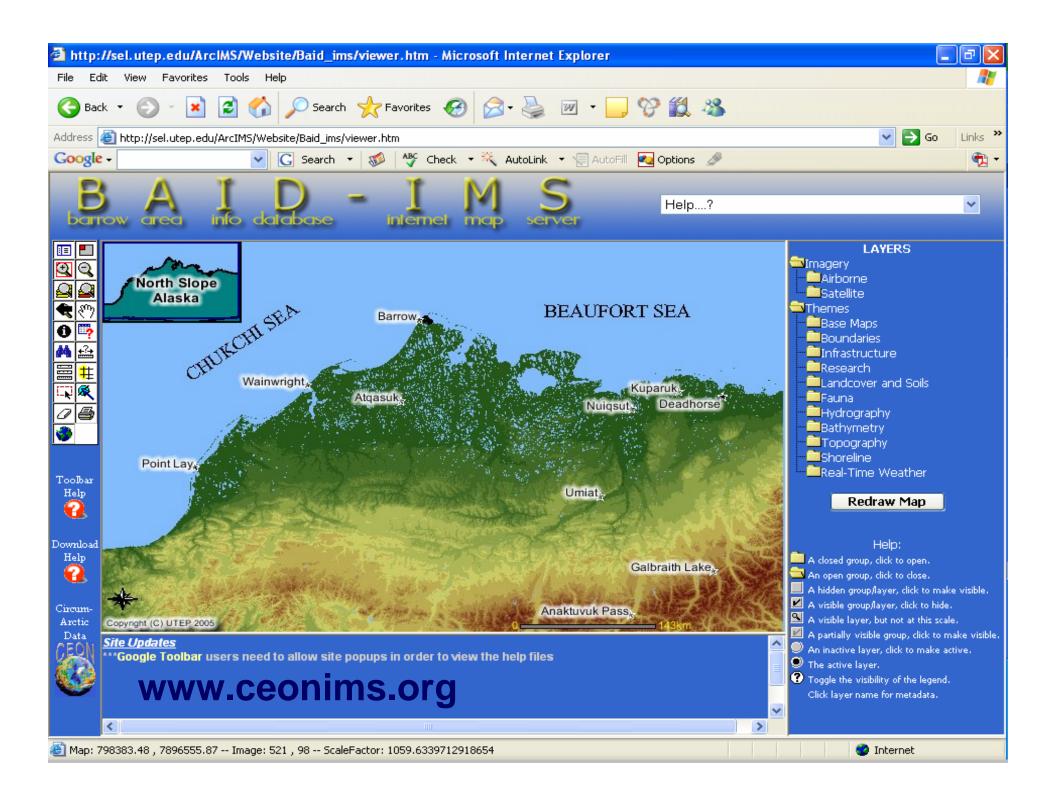
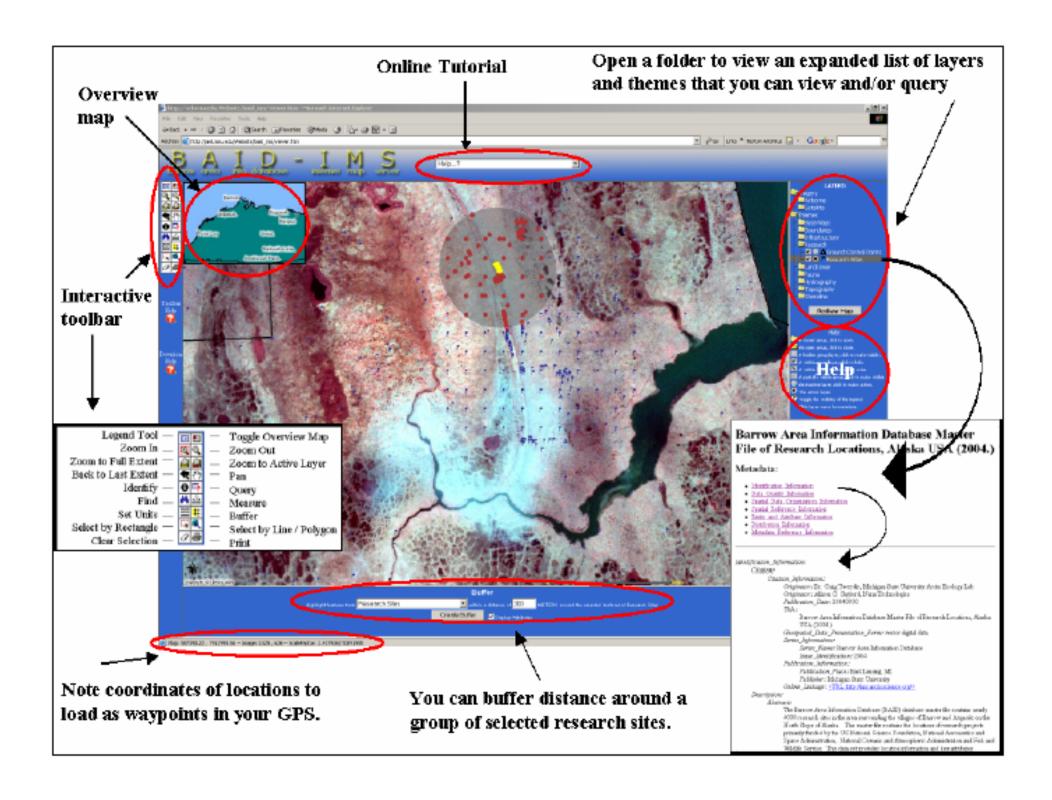


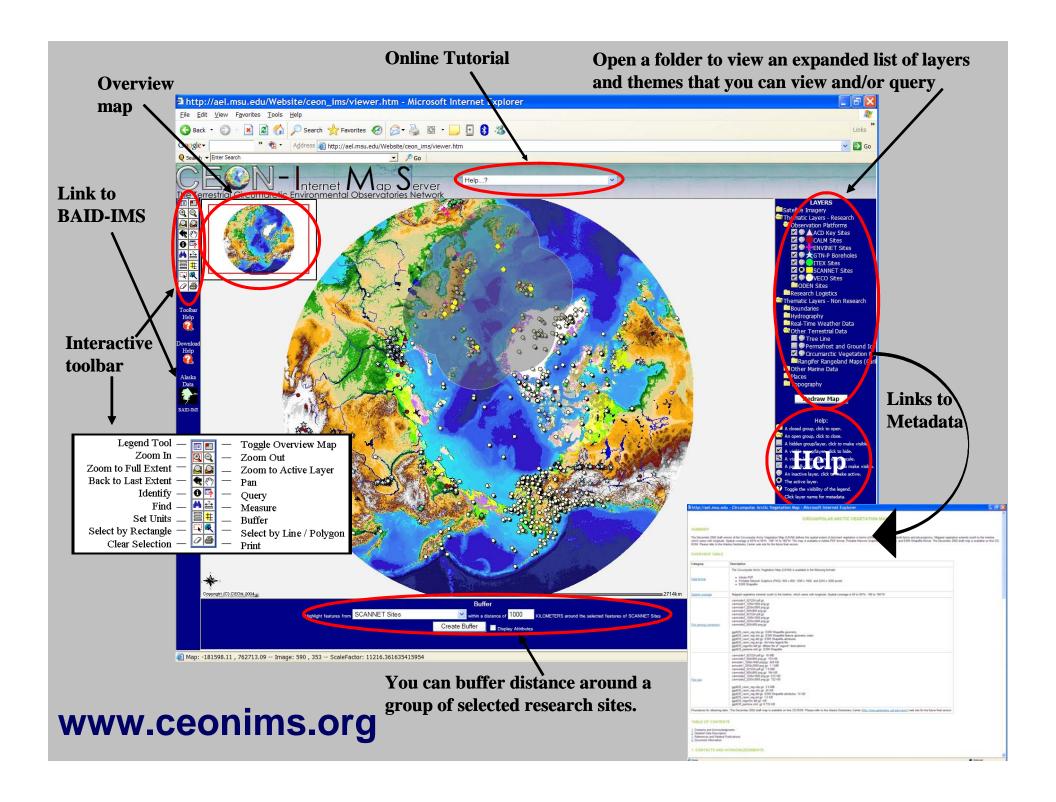
ArcticResearch Mapping Application...

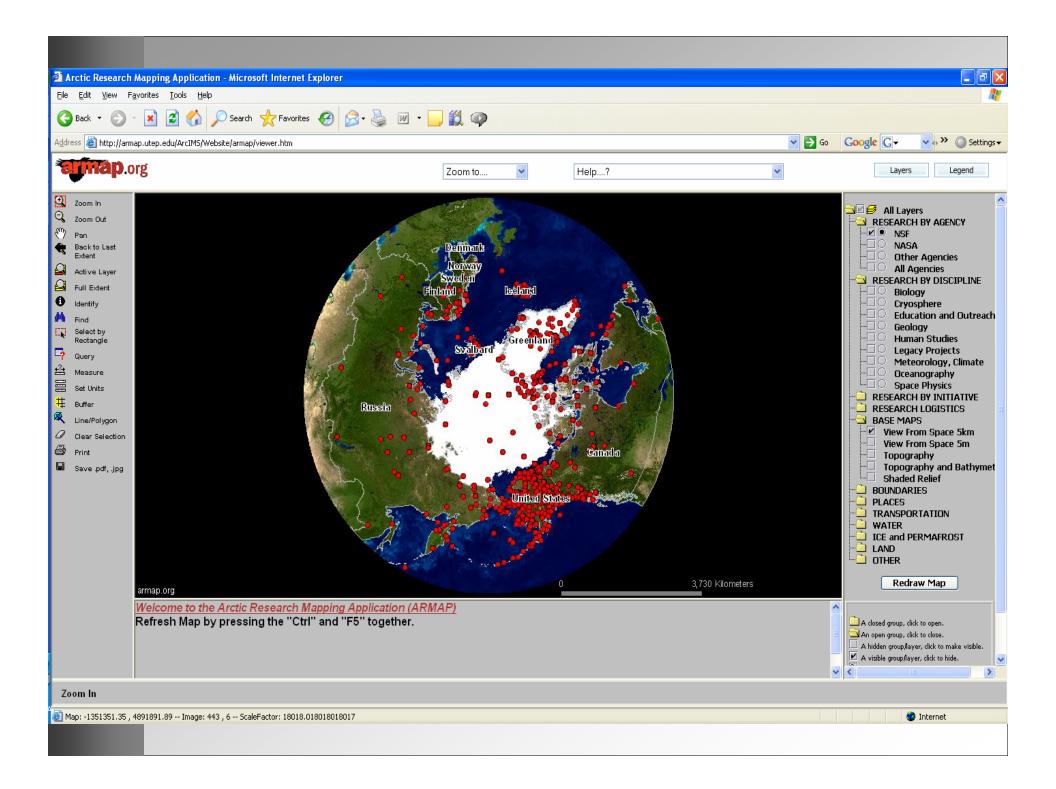
Craig E. Tweedie

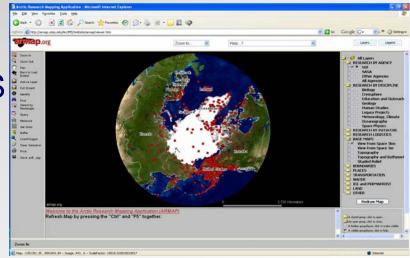
Department of Biology and the Environmental Science and Engineering Program The University of Texas at El Paso, Texas, USA











Overview

- 1. Background
- Capabilities of ARMAP
- 3. Development Team
- 4. Layer Developmental
- 5. ARLSS
- 6. Automated updates of ARLSS
- 7. Hardware configuration
- 8. Software
- 9. Future Directions
- 10. Conclusion

.....Q & A and live demonstration

1. Background

- ARMAP was built under subcontract to NSF's Office of Polar Programs in late 2006.
- Tool for program officers to enhance research and logistic planning, international collaboration and reporting.
- Now being adopted by US and some international researchers.
- Built in time for IPY but also includes projects before IPY.
- Not a data archive ARMAP is an information portal.

2. Capabilities of ARMAP

Users of ARMAP can:

- Zoom in/out, zoom to regions of interest
- Change base maps and points/lines/shape layers of interest ~ over 70 layers currently
- Identify and query relevant information
- Measure distance, buffer an area around a point of interest
- Print maps and save maps to file (jpg, pdf, tif etc)
- View FGDC metadata for each layer
- Export data to MS excel
- Find links to download data, find out more information etc.

3. Development Team

- VECO Polar Resources (VPR)
 - Mike Dover, Diana Garcia-Lavigne, Lucian Novac, Robbie Score
- Nuna Technologies
 - Allison Gaylord
- UTEP
 - G. Walker Johnson (PhD-Biology), Joaquin Aguilar (BSc Comp. Sci.), Raed AlDouri (PhD Geol.), Katherine Fernald (PhD-Env.Sci.&Eng.), Craig Tweedie
- INSTAAR/UC
 - William Manley

4. Layer Development

- Layers are in an ArcSDE Geodatabase.
- Have been re-projected to Polar Lambert (WGS84).
- Updated copies processed from ESRI ArcGIS 9 CD/DVDs.
- 1979-2006 Sea Ice Min / Max processed by NSIDC.
- 5km base map from the ESRI CDs is used for initial extent.
- Blue Marble 500m map is used for better resolution when zoomed into a certain extent.
- Data automatically updated from ARLSS via .NET using a VECO web service and an ArcGIS model.

5. ARLSS

(Arctic Research & Logistics Support System)

- ARLSS is the primary source of project information for ARMAP.
- Database maintained by VPR since 1999.
- Information gathered from award database, award jacket, and data provided by PI.
- High-level project information (PI, abstract, project-related URLs, research lat/long, etc.).
- Mostly Arctic field projects funded by NSF.
- Future ~ info from all US federally-sponsored Arctic field projects ~ some requests internationally.
- Project data constantly added and updated.

6. Auto Updates from ARLSS

- Project information on ARMAP is updated automatically through a web service and a series of data conversion models.
- Data are retrieved via .NET using a VECO web service.
- Conversion of the XML database to *.csv format is scripted.
- ArcGIS Model automates the creation of a series of Geodatabase feature classes (layers).
- Updates occur daily

7. Hardware Configuration

FTP

Development Environment (Systems Ecology Lab)

Server Name: sealtest.utep.edu

Dell PowerEdge 1300 466 Mhz processor 512 MB RAM 10/100 Ethernet

Obtained from UTEP Surplus

Production Environment (Information Resource and Planning)

Server Name: irpsrvgis05.utep.edu Proposed Alias: armap.utep.edu

Dell Blade Server
1855 Dual 3.2 Ghz processors
8 GB RAM
Dual 146 GB mirrored hard drives
Automated backups
24/7 support
Internet 2

Dell EMC SAN providing up to 2.3 TB storage

Access via Microsoft Remote Desktop, FTP, and ArcSDE Client (ArcCatalog)

* Leverage UTEP bulk hardware purchasing with Dell Computer Corp

8. Server Software

- ArcGIS 9.1 SP2
- ArcIMS 9.1 SP2
- ArcSDE 9.1
- Jarcarta Tomcat 5.0.28
- Java Development Kit 5.0
- Microsoft Internet Information Server 6
- Microsoft SQL Server 2005
- Microsoft Visual Studio 2005
- Microsoft Remote Desktop

9. Future Directions

- Maintain ARMAP.
- Develop additional layers as required.
- Increased number of web services will be added as these are developed or are requested.
- Liaise with NSIDC to visualize and link to IPY-DIS.
- Transition to ArcServer 9.2 from ArcIMS.
- Develop auto-updates for *.kml files for Google Earth.
- Develop prototype 3D application.
- Maintain full application documentation and free access to data and customizations.
- Develop training modules and conduct training sessions.
- Educate students in web-based GIS development.

Comparison of ArcIMS, GIS Explorer and Google Earth

	ArcIMS (html viewer)	ArcGIS Explorer	Google Earth 4	Comments
3D Geobrowser	No	Yes	Yes	
Download and software installation required	No	Yes	Yes	
Open Source	No	No	No	
WMS / WFS client (Open Geospatial Consortium standards)	Yes	Yes	No	
Supplies default imagery	No	Yes	Yes	Base imagery largely provided by developer with Arc products. GE has superior default base imagery.
Supplies default terrain	No	Yes	Yes	Custom terrain easily integrated into Arc products.
Supplies default framework data such as roads, placenames	No	Yes	Yes	Custom vector based framework data is easily integrated in all products
Widespread appeal	Yes	Unknown	Yes	GE most widely used 3D Geobrowser
Performance	Varies	Varies	Excellent	Performance for Arc products varies due to imagery used, WMS, database performance, server capacities, internet hosting, etc.
Can make complex searches	Yes	Yes	No	
KML support	No	Yes	Yes	
GIS functionality	Yes	Yes	No	

^{*}The Arc products have an extensive network of support services including user forums, blogs, technical support, online classes and script archives.

^{*}GE developer network appears to be limited to bulletin boards and blogs, but growing rapidly.

10. Conclusion

- ARMAP was developed under contract to NSF-OPP to improve capacities for science, logistics and coordination in US arctic research.
- ArcIMS has proven to be a useful tool in this development ~ needs to be faster and more stable.
- Future developments will expand the data and information available to users, increase speed and stability, and develop a 3D prototype application.
- Educate next generation of web based information system developers.

Craig E. Tweedie

(Department of Biology and the

Environmental Science and Engineering Program)

Office: 103/413 Biology Building Lab: 325/420 Biology Building

Email: ctweedie@utep.edu

Office: 915-747-8448

www.armap.org www.baidims.org www.ceonims.org